Suppr超能文献

一种用于配对样本的贝叶斯非参数检验程序。

A Bayesian nonparametric testing procedure for paired samples.

作者信息

Pereira Luz Adriana, Taylor-Rodríguez Daniel, Gutiérrez Luis

机构信息

Escuela de Estadística, Universidad del Valle, Cali, Colombia.

Department of Mathematics and Statistics, Portland State University, Portland, Oregon.

出版信息

Biometrics. 2020 Dec;76(4):1133-1146. doi: 10.1111/biom.13234. Epub 2020 Feb 18.

Abstract

We propose a Bayesian hypothesis testing procedure for comparing the distributions of paired samples. The procedure is based on a flexible model for the joint distribution of both samples. The flexibility is given by a mixture of Dirichlet processes. Our proposal uses a spike-slab prior specification for the base measure of the Dirichlet process and a particular parametrization for the kernel of the mixture in order to facilitate comparisons and posterior inference. The joint model allows us to derive the marginal distributions and test whether they differ or not. The procedure exploits the correlation between samples, relaxes the parametric assumptions, and detects possible differences throughout the entire distributions. A Monte Carlo simulation study comparing the performance of this strategy to other traditional alternatives is provided. Finally, we apply the proposed approach to spirometry data collected in the United States to investigate changes in pulmonary function in children and adolescents in response to air polluting factors.

摘要

我们提出了一种用于比较配对样本分布的贝叶斯假设检验程序。该程序基于一个灵活的模型,用于两个样本的联合分布。灵活性由狄利克雷过程的混合给出。我们的提议对狄利克雷过程的基础测度使用尖峰平板先验规范,并对混合核使用特定的参数化,以便于比较和后验推断。联合模型使我们能够推导出边际分布,并检验它们是否不同。该程序利用了样本之间的相关性,放宽了参数假设,并在整个分布中检测可能的差异。提供了一项蒙特卡罗模拟研究,将该策略的性能与其他传统方法进行比较。最后,我们将所提出的方法应用于在美国收集的肺活量测定数据,以研究儿童和青少年肺功能因空气污染因素而发生的变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验