Dunson David B, Peddada Shyamal D
Biostatistics Branch, MD A3-03, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, U.S.A.
Biometrika. 2008 Dec;95(4):859-874. doi: 10.1093/biomet/asn043. Epub 2008 Nov 3.
This article considers Bayesian inference about collections of unknown distributions subject to a partial stochastic ordering. To address problems in testing of equalities between groups and estimation of group-specific distributions, we propose classes of restricted dependent Dirichlet process priors. These priors have full support in the space of stochastically ordered distributions, and can be used for collections of unknown mixture distributions to obtain a flexible class of mixture models. Theoretical properties are discussed, efficient methods are developed for posterior computation using Markov chain Monte Carlo, and the methods are illustrated using data from a study of DNA damage and repair.
本文考虑了关于受部分随机序约束的未知分布集合的贝叶斯推断。为了解决组间相等性检验和组特定分布估计中的问题,我们提出了受限相依狄利克雷过程先验的类别。这些先验在随机序分布空间中具有完全支撑,并且可用于未知混合分布的集合以获得一类灵活的混合模型。讨论了理论性质,开发了使用马尔可夫链蒙特卡罗进行后验计算的有效方法,并使用来自一项DNA损伤与修复研究的数据对这些方法进行了说明。