Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China.
Maritime College, Guangdong Ocean University, Zhanjiang, P. R. China.
Electrophoresis. 2020 Jun;41(10-11):793-801. doi: 10.1002/elps.201900474. Epub 2020 Feb 12.
Vortex formation near a two-part cylinder with zeta potentials of different values but the same sign under an external DC electric field is numerically investigated in this paper. The cylinder, inserted in a straight microchannel filled with an aqueous solution, is composed of an upstream part and a downstream part. When a DC electric field is applied in the channel, under certain conditions, the vortex will form near the cylinder due to the different velocities of electroosmotic flow generated on the cylinder surface. The numerical results reveal that the larger the velocity difference of electroosmotic flow generated on the two-part cylinder and the smaller the channel width, the more conducive to vortex formation in the channel. In addition, if the zeta potential ratios of cylinder downstream part to upstream part and channel wall to cylinder upstream part are unchanged, the DC electric field strength and the zeta potential value do not affect the pattern of vortices formed in the channel. This study provides a way for vortex formation in microchannels and has the potential application in microfluidic devices.
本文数值研究了在直流电场作用下,具有相同符号但不同ζ电位的两部分圆柱附近的涡旋形成。该圆柱插入充满水溶液的直微通道中,由上游部分和下游部分组成。当在通道中施加直流电场时,在某些条件下,由于圆柱表面上产生的电渗流速度不同,会在圆柱附近形成涡旋。数值结果表明,两部分圆柱上产生的电渗流速度差越大,通道宽度越小,越有利于通道内涡旋的形成。此外,如果圆柱下游部分与上游部分和通道壁与圆柱上游部分的ζ电位比保持不变,直流电场强度和ζ电位值不会影响通道中形成的涡旋模式。本研究为微通道中的涡旋形成提供了一种方法,在微流控器件中有潜在的应用。