Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan.
Sensors (Basel). 2020 Jan 28;20(3):706. doi: 10.3390/s20030706.
Bin-picking of small parcels and other textureless planar-faced objects is a common task at warehouses. A general color image-based vision-guided robot picking system requires feature extraction and goal image preparation of various objects. However, feature extraction for goal image matching is difficult for textureless objects. Further, prior preparation of huge numbers of goal images is impractical at a warehouse. In this paper, we propose a novel depth image-based vision-guided robot bin-picking system for textureless planar-faced objects. Our method uses a deep convolutional neural network (DCNN) model that is trained on 15,000 annotated depth images synthetically generated in a physics simulator to directly predict grasp points without object segmentation. Unlike previous studies that predicted grasp points for a robot suction hand with only one vacuum cup, our DCNN also predicts optimal grasp patterns for a hand with two vacuum cups (left cup on, right cup on, or both cups on). Further, we propose a surface feature descriptor to extract surface features (center position and normal) and refine the predicted grasp point position, removing the need for texture features for vision-guided robot control and sim-to-real modification for DCNN model training. Experimental results demonstrate the efficiency of our system, namely that a robot with 7 degrees of freedom can pick randomly posed textureless boxes in a cluttered environment with a 97.5% success rate at speeds exceeding 1000 pieces per hour.
小包裹和其他无纹理平面物体的分拣是仓库中的常见任务。一般的基于颜色图像的视觉引导机器人分拣系统需要对各种物体进行特征提取和目标图像准备。然而,对于无纹理物体,目标图像匹配的特征提取很困难。此外,在仓库中预先准备大量的目标图像是不切实际的。在本文中,我们提出了一种新颖的基于深度图像的视觉引导机器人无纹理平面物体分拣系统。我们的方法使用了一个经过 15000 张在物理模拟器中合成标注的深度图像训练的深度卷积神经网络(DCNN)模型,直接预测抓取点,而无需进行物体分割。与之前仅预测具有一个真空吸盘的机器人吸盘抓取点的研究不同,我们的 DCNN 还预测了具有两个真空吸盘(左杯开启、右杯开启或两个杯都开启)的最佳抓取模式。此外,我们提出了一种表面特征描述符来提取表面特征(中心位置和法向量),并细化预测的抓取点位置,从而无需为视觉引导机器人控制提取纹理特征,并对 DCNN 模型训练进行仿真到真实的修正。实验结果证明了我们系统的效率,即具有 7 个自由度的机器人可以以超过 1000 件/小时的速度在杂乱环境中以 97.5%的成功率随机抓取无纹理盒子。