文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于光泵磁共振磁强计的磁性纳米粒子定量 2D 磁弛豫成像。

Quantitative 2D Magnetorelaxometry Imaging of Magnetic Nanoparticles using Optically Pumped Magnetometers.

机构信息

Institute of Electrical and Biomedical Engineering, UMIT - Private University for Health Sciences, Medical Informatics and Technology, 6060 Hall in Tirol, Austria.

Department Biosignals, PTB - Physikalisch-Technische Bundesanstalt, 10587 Berlin, Germany.

出版信息

Sensors (Basel). 2020 Jan 29;20(3):753. doi: 10.3390/s20030753.


DOI:10.3390/s20030753
PMID:32013245
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7038374/
Abstract

For biomagnetical applications exploiting physical properties of magnetic nanoparticles (MNP), e.g., magnetic hyperthermia, knowledge about the quantitative spatial MNP distribution is crucial, which can be extracted by magnetorelaxometry (MRX) imaging. In this paper, we present quantification, quantitative 1D reconstruction, and quantitative 2D imaging of MNP by exploiting optically pumped magnetometers for MRX. While highlighting the potential of commercially available optically pumped magnetometers (OPM) for MRXI, we discuss current limitations of the used OPM. We show, that with our OPM setup, MNP can be precisely quantified with iron amounts down to ≈ 6 g , which can be improved easily. With a 1D-reconstruction setup, point-like and complex MNP phantoms can be reconstructed quantitatively with high precision and accuracy. We show that with our developed 2D MRX imaging setup, which measures 12 c m by 8 c m , point-like MNP distributions with clinically relevant iron concentrations can be reconstructed precisely and accurately. Our 2D setup has the potential to be easily extended to a tomography styled (and thus slice-selective) 3D scanner, by adding a mechanical axis to the phantom.

摘要

对于利用磁性纳米粒子 (MNP) 物理特性的生物磁学应用,例如磁热疗,定量的空间 MNP 分布知识是至关重要的,这可以通过磁弛豫测量 (MRX) 成像来提取。在本文中,我们通过利用光泵磁力计进行 MRX 来实现 MNP 的定量、一维重建和二维成像。在强调商用光泵磁力计 (OPM) 在 MRXI 中的潜力的同时,我们还讨论了所使用的 OPM 的当前限制。我们表明,通过我们的 OPM 装置,可以精确地定量测量低至 ≈ 6 克的铁量,这很容易得到改进。通过一维重建装置,可以高精度、高准确度地重建点状和复杂的 MNP 体模。我们展示了,通过我们开发的二维 MRX 成像装置,它的测量范围为 12 厘米乘 8 厘米,可以精确、准确地重建具有临床相关铁浓度的点状 MNP 分布。我们的二维装置具有通过向体模添加机械轴很容易扩展到层析样式 (即切片选择) 的 3D 扫描仪的潜力。

相似文献

[1]
Quantitative 2D Magnetorelaxometry Imaging of Magnetic Nanoparticles using Optically Pumped Magnetometers.

Sensors (Basel). 2020-1-29

[2]
Pulsed Optically Pumped Magnetometers: Addressing Dead Time and Bandwidth for the Unshielded Magnetorelaxometry of Magnetic Nanoparticles.

Sensors (Basel). 2021-2-9

[3]
Developing magnetorelaxometry imaging for human applications.

Phys Med Biol. 2022-11-9

[4]
Quantitative model selection for enhanced magnetic nanoparticle imaging in magnetorelaxometry.

Med Phys. 2015-12

[5]
Human-sized quantitative imaging of magnetic nanoparticles with nonlinear magnetorelaxometry.

Phys Med Biol. 2023-7-19

[6]
Magnetorelaxometry procedures for quantitative imaging and characterization of magnetic nanoparticles in biomedical applications.

Biomed Tech (Berl). 2015-10

[7]
Multi-color magnetic nanoparticle imaging using magnetorelaxometry.

Phys Med Biol. 2017-4-21

[8]
Toward 2D and 3D imaging of magnetic nanoparticles using EPR measurements.

Med Phys. 2015-9

[9]
Magnetorelaxometry assisting biomedical applications of magnetic nanoparticles.

Pharm Res. 2011-12-8

[10]
Evaluating selection criteria for optimized excitation coils in magnetorelaxometry imaging.

Phys Med Biol. 2021-11-22

引用本文的文献

[1]
Monitoring magnetic nanoparticle clustering and immobilization with thermal noise magnetometry using optically pumped magnetometers.

Nanoscale Adv. 2023-3-15

[2]
Quantitative imaging of magnetic nanoparticles in an unshielded environment using a large AC susceptibility array.

J Biol Eng. 2022-10-11

[3]
Experimental demonstration of improved magnetorelaxometry imaging performance using optimized coil configurations.

Med Phys. 2022-5

[4]
Adaptive Model for Magnetic Particle Mapping Using Magnetoelectric Sensors.

Sensors (Basel). 2022-1-24

[5]
2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem.

Sensors (Basel). 2021-10-25

[6]
Pulsed Optically Pumped Magnetometers: Addressing Dead Time and Bandwidth for the Unshielded Magnetorelaxometry of Magnetic Nanoparticles.

Sensors (Basel). 2021-2-9

[7]
Simultaneous Coercivity and Size Determination of Magnetic Nanoparticles.

Sensors (Basel). 2020-7-12

[8]
Specific Loss Power of Co/Li/Zn-Mixed Ferrite Powders for Magnetic Hyperthermia.

Sensors (Basel). 2020-4-10

本文引用的文献

[1]
Multi-color magnetic nanoparticle imaging using magnetorelaxometry.

Phys Med Biol. 2017-4-21

[2]
Magnetorelaxometry procedures for quantitative imaging and characterization of magnetic nanoparticles in biomedical applications.

Biomed Tech (Berl). 2015-10

[3]
Quantitative imaging of magnetic nanoparticles by magnetorelaxometry with multiple excitation coils.

Phys Med Biol. 2014-11-7

[4]
Magnetorelaxometry assisting biomedical applications of magnetic nanoparticles.

Pharm Res. 2011-12-8

[5]
Demagnetization of magnetically shielded rooms.

Rev Sci Instrum. 2007-3

[6]
Quantification of magnetic nanoparticles by magnetorelaxometry and comparison to histology after magnetic drug targeting.

J Nanosci Nanotechnol. 2006

[7]
A subfemtotesla multichannel atomic magnetometer.

Nature. 2003-4-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索