Jaufenthaler Aaron, Kornack Thomas, Lebedev Victor, Limes Mark E, Körber Rainer, Liebl Maik, Baumgarten Daniel
Institute of Electrical and Biomedical Engineering, UMIT-Private University for Health Sciences, Medical Informatics and Technology, 6060 Hall in Tirol, Austria.
Twinleaf LLC, Plainsboro Township, NJ 08536, USA.
Sensors (Basel). 2021 Feb 9;21(4):1212. doi: 10.3390/s21041212.
Magnetic nanoparticles (MNP) offer a large variety of promising applications in medicine thanks to their exciting physical properties, e.g., magnetic hyperthermia and magnetic drug targeting. For these applications, it is crucial to quantify the amount of MNP in their specific binding state. This information can be obtained by means of magnetorelaxometry (MRX), where the relaxation of previously aligned magnetic moments of MNP is measured. Current MRX with optically pumped magnetometers (OPM) is limited by OPM recovery time after the shut-off of the external magnetic field for MNP alignment, therewith preventing the detection of fast relaxing MNP. We present a setup for OPM-MRX measurements using a commercially available pulsed free-precession OPM, where the use of a high power pulsed pump laser in the sensor enables a system recovery time in the microsecond range. Besides, magnetometer raw data processing techniques for Larmor frequency analysis are proposed and compared in this paper. Due to the high bandwidth (≥100 kHz) and high dynamic range of our OPM, a software gradiometer in a compact enclosure allows for unshielded MRX measurements in a laboratory environment. When operated in the MRX mode with non-optimal pumping performance, the OPM shows an unshielded gradiometric noise floor of about 600 fT/cm/Hz for a 2.3 cm baseline. The noise floor is flat up to 1 kHz and increases then linearly with the frequency. We demonstrate that quantitative unshielded MRX measurements of fast relaxing, water suspended MNP is possible with the novel OPM-MRX concept, confirmed by the accurately derived iron amount ratios of MNP samples. The detection limit of the current setup is about 1.37 μg of iron for a liquid BNF-MNP-sample (Bionized NanoFerrite) with a volume of 100 μL.
磁性纳米颗粒(MNP)因其令人兴奋的物理特性,如磁热疗和磁性药物靶向,在医学领域有着各种各样有前景的应用。对于这些应用,量化处于特定结合状态的MNP的量至关重要。该信息可通过磁弛豫测量法(MRX)获得,其中测量MNP先前排列的磁矩的弛豫。目前使用光泵磁力计(OPM)的MRX受到外部磁场关闭后用于MNP排列的OPM恢复时间的限制,从而无法检测快速弛豫的MNP。我们展示了一种使用市售脉冲自由进动OPM进行OPM-MRX测量的装置,其中传感器中使用高功率脉冲泵浦激光器可使系统恢复时间在微秒范围内。此外,本文还提出并比较了用于拉莫尔频率分析的磁力计原始数据处理技术。由于我们的OPM具有高带宽(≥100 kHz)和高动态范围,紧凑外壳中的软件梯度仪允许在实验室环境中进行非屏蔽MRX测量。当以非最佳泵浦性能在MRX模式下运行时,对于2.3 cm的基线,OPM显示出约600 fT/cm/Hz的非屏蔽梯度噪声本底。噪声本底在1 kHz以下是平坦的,然后随频率线性增加。我们证明,通过新颖的OPM-MRX概念,可以对快速弛豫的水悬浮MNP进行定量非屏蔽MRX测量,MNP样品准确推导的铁含量比证实了这一点。对于体积为100 μL的液体BNF-MNP样品(生物离子化纳米铁氧体),当前装置的检测限约为1.37 μg铁。
Pharm Res. 2011-12-8
Phys Med Biol. 2023-7-19
Phys Med Biol. 2017-4-21
Nat Commun. 2022-8-8
Sci Rep. 2022-7-28
Sensors (Basel). 2021-11-19
Micromachines (Basel). 2021-6-29
IEEE Sens J. 2020-11
Beilstein J Nanotechnol. 2020-1-7
IEEE Trans Instrum Meas. 2019-2
Sensors (Basel). 2018-1-7
IEEE Trans Biomed Circuits Syst. 2017-8