文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脉冲光泵磁力仪:解决磁性纳米颗粒非屏蔽磁弛豫测量中的死时间和带宽问题。

Pulsed Optically Pumped Magnetometers: Addressing Dead Time and Bandwidth for the Unshielded Magnetorelaxometry of Magnetic Nanoparticles.

作者信息

Jaufenthaler Aaron, Kornack Thomas, Lebedev Victor, Limes Mark E, Körber Rainer, Liebl Maik, Baumgarten Daniel

机构信息

Institute of Electrical and Biomedical Engineering, UMIT-Private University for Health Sciences, Medical Informatics and Technology, 6060 Hall in Tirol, Austria.

Twinleaf LLC, Plainsboro Township, NJ 08536, USA.

出版信息

Sensors (Basel). 2021 Feb 9;21(4):1212. doi: 10.3390/s21041212.


DOI:10.3390/s21041212
PMID:33572285
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7915455/
Abstract

Magnetic nanoparticles (MNP) offer a large variety of promising applications in medicine thanks to their exciting physical properties, e.g., magnetic hyperthermia and magnetic drug targeting. For these applications, it is crucial to quantify the amount of MNP in their specific binding state. This information can be obtained by means of magnetorelaxometry (MRX), where the relaxation of previously aligned magnetic moments of MNP is measured. Current MRX with optically pumped magnetometers (OPM) is limited by OPM recovery time after the shut-off of the external magnetic field for MNP alignment, therewith preventing the detection of fast relaxing MNP. We present a setup for OPM-MRX measurements using a commercially available pulsed free-precession OPM, where the use of a high power pulsed pump laser in the sensor enables a system recovery time in the microsecond range. Besides, magnetometer raw data processing techniques for Larmor frequency analysis are proposed and compared in this paper. Due to the high bandwidth (≥100 kHz) and high dynamic range of our OPM, a software gradiometer in a compact enclosure allows for unshielded MRX measurements in a laboratory environment. When operated in the MRX mode with non-optimal pumping performance, the OPM shows an unshielded gradiometric noise floor of about 600 fT/cm/Hz for a 2.3 cm baseline. The noise floor is flat up to 1 kHz and increases then linearly with the frequency. We demonstrate that quantitative unshielded MRX measurements of fast relaxing, water suspended MNP is possible with the novel OPM-MRX concept, confirmed by the accurately derived iron amount ratios of MNP samples. The detection limit of the current setup is about 1.37 μg of iron for a liquid BNF-MNP-sample (Bionized NanoFerrite) with a volume of 100 μL.

摘要

磁性纳米颗粒(MNP)因其令人兴奋的物理特性,如磁热疗和磁性药物靶向,在医学领域有着各种各样有前景的应用。对于这些应用,量化处于特定结合状态的MNP的量至关重要。该信息可通过磁弛豫测量法(MRX)获得,其中测量MNP先前排列的磁矩的弛豫。目前使用光泵磁力计(OPM)的MRX受到外部磁场关闭后用于MNP排列的OPM恢复时间的限制,从而无法检测快速弛豫的MNP。我们展示了一种使用市售脉冲自由进动OPM进行OPM-MRX测量的装置,其中传感器中使用高功率脉冲泵浦激光器可使系统恢复时间在微秒范围内。此外,本文还提出并比较了用于拉莫尔频率分析的磁力计原始数据处理技术。由于我们的OPM具有高带宽(≥100 kHz)和高动态范围,紧凑外壳中的软件梯度仪允许在实验室环境中进行非屏蔽MRX测量。当以非最佳泵浦性能在MRX模式下运行时,对于2.3 cm的基线,OPM显示出约600 fT/cm/Hz的非屏蔽梯度噪声本底。噪声本底在1 kHz以下是平坦的,然后随频率线性增加。我们证明,通过新颖的OPM-MRX概念,可以对快速弛豫的水悬浮MNP进行定量非屏蔽MRX测量,MNP样品准确推导的铁含量比证实了这一点。对于体积为100 μL的液体BNF-MNP样品(生物离子化纳米铁氧体),当前装置的检测限约为1.37 μg铁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/d50a7445c741/sensors-21-01212-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/e10240d0a194/sensors-21-01212-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/023fbe49827f/sensors-21-01212-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/e05774b8293b/sensors-21-01212-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/0e83ac9dc61a/sensors-21-01212-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/7d903b4d222b/sensors-21-01212-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/b5434ecfae40/sensors-21-01212-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/fb716c603888/sensors-21-01212-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/de716e6d960f/sensors-21-01212-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/d222720b9c75/sensors-21-01212-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/d833970fd2af/sensors-21-01212-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/ea91f31aeacc/sensors-21-01212-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/cdd636438747/sensors-21-01212-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/d50a7445c741/sensors-21-01212-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/e10240d0a194/sensors-21-01212-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/023fbe49827f/sensors-21-01212-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/e05774b8293b/sensors-21-01212-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/0e83ac9dc61a/sensors-21-01212-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/7d903b4d222b/sensors-21-01212-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/b5434ecfae40/sensors-21-01212-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/fb716c603888/sensors-21-01212-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/de716e6d960f/sensors-21-01212-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/d222720b9c75/sensors-21-01212-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/d833970fd2af/sensors-21-01212-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/ea91f31aeacc/sensors-21-01212-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/cdd636438747/sensors-21-01212-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/7915455/d50a7445c741/sensors-21-01212-g013.jpg

相似文献

[1]
Pulsed Optically Pumped Magnetometers: Addressing Dead Time and Bandwidth for the Unshielded Magnetorelaxometry of Magnetic Nanoparticles.

Sensors (Basel). 2021-2-9

[2]
Quantitative 2D Magnetorelaxometry Imaging of Magnetic Nanoparticles using Optically Pumped Magnetometers.

Sensors (Basel). 2020-1-29

[3]
Quantitative model selection for enhanced magnetic nanoparticle imaging in magnetorelaxometry.

Med Phys. 2015-12

[4]
Magnetorelaxometry assisting biomedical applications of magnetic nanoparticles.

Pharm Res. 2011-12-8

[5]
Unshielded portable optically pumped magnetometer for the remote detection of conductive objects using eddy current measurements.

Rev Sci Instrum. 2022-12-1

[6]
Human-sized quantitative imaging of magnetic nanoparticles with nonlinear magnetorelaxometry.

Phys Med Biol. 2023-7-19

[7]
Quantitative imaging of magnetic nanoparticles by magnetorelaxometry with multiple excitation coils.

Phys Med Biol. 2014-11-7

[8]
Multi-color magnetic nanoparticle imaging using magnetorelaxometry.

Phys Med Biol. 2017-4-21

[9]
Magnetorelaxometry procedures for quantitative imaging and characterization of magnetic nanoparticles in biomedical applications.

Biomed Tech (Berl). 2015-10

[10]
Monitoring magnetic nanoparticle clustering and immobilization with thermal noise magnetometry using optically pumped magnetometers.

Nanoscale Adv. 2023-3-15

引用本文的文献

[1]
Simplified shielded MEG-MRI multimodal system with scalar-mode optically pumped magnetometers as MEG sensors.

Sci Rep. 2024-10-28

[2]
Feasibility of magnetomyography with optically pumped magnetometers in a mobile magnetic shield.

Sci Rep. 2024-8-16

[3]
Pulsed MPI Relaxometry of Brownian and Néel Field-Dependent Relaxation in Superparamagnetic Magnetite Nanoparticles Confirm Theory and Simulations.

Small. 2024-11

[4]
Quantum-assisted distortion-free audio signal sensing.

Nat Commun. 2022-8-8

[5]
A digital alkali spin maser.

Sci Rep. 2022-7-28

[6]
JOM-4S Overhauser Magnetometer and Sensitivity Estimation.

Sensors (Basel). 2021-11-19

[7]
Microfluidic Synthesis, Control, and Sensing of Magnetic Nanoparticles: A Review.

Micromachines (Basel). 2021-6-29

本文引用的文献

[1]
Scalar Magnetometry Below 100 fT/Hz in a Microfabricated Cell.

IEEE Sens J. 2020-11

[2]
Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications.

Sci Rep. 2020-2-12

[3]
Quantitative 2D Magnetorelaxometry Imaging of Magnetic Nanoparticles using Optically Pumped Magnetometers.

Sensors (Basel). 2020-1-29

[4]
A review of demodulation techniques for multifrequency atomic force microscopy.

Beilstein J Nanotechnol. 2020-1-7

[5]
Magnetic Source Imaging Using a Pulsed Optically Pumped Magnetometer Array.

IEEE Trans Instrum Meas. 2019-2

[6]
Magnetorelaxometry in the Presence of a DC Bias Field of Ferromagnetic Nanoparticles Bearing a Viscoelastic Corona.

Sensors (Basel). 2018-5-22

[7]
Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections.

Sensors (Basel). 2018-1-7

[8]
Giant Magnetoresistive Biosensor Array for Detecting Magnetorelaxation.

IEEE Trans Biomed Circuits Syst. 2017-8

[9]
Magnetorelaxometry procedures for quantitative imaging and characterization of magnetic nanoparticles in biomedical applications.

Biomed Tech (Berl). 2015-10

[10]
Relaxometry and Dephasing Imaging of Superparamagnetic Magnetite Nanoparticles Using a Single Qubit.

Nano Lett. 2015-7-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索