School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China.
Int J Biol Macromol. 2020 Apr 15;149:707-716. doi: 10.1016/j.ijbiomac.2020.01.297. Epub 2020 Feb 1.
Hydrogels derived from natural polymers have been extensively investigated in the biomedical field, while inherent brittleness and poor stability limit their applications. In this study, a tough pectin-Fe/poly (acrylamide-co-stearyl methacrylate) (P(AAm-co-SMA)) double physical crosslinking (DPC) network hydrogel is prepared using a three-step method. The first HPAAm network is formed via hydrophobic associations among the PSMA segment in P(AAm-co-SMA), and trivalent ions (Fe) crosslinked pectin network as the second network. Due to the reversibility of dual physical cross-linking structures, the pectin-Fe/HPAAm hydrogel exhibit excellent toughness (1.04-11.20 MJ m). In addition, the pectin-Fe/HPAAm DPC hydrogels have tunable mechanical properties (tensile strength: 0.97-1.61 MPa, elongation: 133-1346%, elastic modulus: 0.30-2.20 MPa) via adjusting the ratio of pectin network and HPAAm network. To explore their potential application in tissue engineering, ATDC5 chondrocytes were seeded on the prepared DPC hydrogels. Results suggest that the pectin-Fe/HPAAm DPC hydrogels can support the adhesion and proliferation of ATDC5, moreover, the ATDC5 cells can penetrate into the hydrogel. It is concluded that the prepared hydrogels exhibit potential application in the load-bearing tissue repair field.
水凝胶来源于天然聚合物,在生物医学领域得到了广泛的研究,而固有脆性和较差的稳定性限制了其应用。本研究采用三步法制备了一种坚韧的果胶-Fe/聚(丙烯酰胺-co-硬脂基甲基丙烯酰胺)(P(AAm-co-SMA))双重物理交联(DPC)网络水凝胶。首先,通过 P(AAm-co-SMA)中的 SMA 段之间的疏水缔合以及三价离子(Fe)交联果胶网络形成第一个 HPAAm 网络。由于双重物理交联结构的可逆性,果胶-Fe/HPAAm 水凝胶表现出优异的韧性(1.04-11.20 MJ m)。此外,通过调整果胶网络和 HPAAm 网络的比例,果胶-Fe/HPAAm DPC 水凝胶具有可调节的机械性能(拉伸强度:0.97-1.61 MPa,伸长率:133-1346%,弹性模量:0.30-2.20 MPa)。为了探索其在组织工程中的潜在应用,将 ATDC5 软骨细胞接种到制备的 DPC 水凝胶上。结果表明,果胶-Fe/HPAAm DPC 水凝胶能够支持 ATDC5 的黏附和增殖,并且 ATDC5 细胞可以穿透水凝胶。研究结论表明,所制备的水凝胶在承载组织修复领域具有潜在的应用价值。