University of California, San Diego, CA, United States.
Instituto Interdisciplinario de Ciencias Básicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
Acta Biomater. 2020 Apr 1;106:208-224. doi: 10.1016/j.actbio.2020.01.026. Epub 2020 Jan 31.
Although there are many successful descriptions of the mechanical response of dermis at different levels of complexity and incorporating varying degrees of the physical phenomena involved in deformation, observations indicate that the unraveling of fibers involves a complex three-dimensional process in which they interact in ways that resemble a braided pattern. Here we develop two complementary treatments to gain a better understanding of the mechanical response of dermis: a) an analytical treatment incorporating fibril stiffness, interfibrillar frictional sliding, and the effect of lateral fibers on the extension of a primary fiber; b) a coarse-grained molecular dynamics model comprised of an array of parallel curved fibrils simulating a fiber. Interfibrillar frictional sliding and stiffness are also captured. Both analytical and molecular dynamics models operate at a scale compatible with the wavelength of collagen fibers (~10 µm). The constitutive description presented here incorporates important physical processes taking place during deformation of dermis and thus represents an advance in our understanding of these phenomena. STATEMENT OF SIGNIFICANCE: Microstructural observations of the dermis of skin during tensile deformation indicate that the unraveling of fibers involves a complex three-dimensional process which replicates the effects of braiding. Two complementary constitutive modeling treatments were developed to gain a better understanding of the mechanical response of dermis: an analytical treatment incorporating fibril stiffness, interfibrillar sliding, and the effect of transverse fibers; and a coarse-grained molecular dynamics model describing the fibril bundling effect. An important novel aspect of the current contribution is the recognition that tridimensional collagen fiber arrangements play an important role in the mechanical response. The constitutive description presented here incorporates physical processes taking place during deformation of the dermis and thus represents an advance in our understanding of these phenomena.
尽管已经有许多成功描述皮肤真皮机械响应的研究,涵盖了不同复杂程度的水平和包含了不同程度的变形相关物理现象,但观察表明纤维的解开涉及到一个复杂的三维过程,其中它们以类似于编织模式的方式相互作用。在这里,我们开发了两种互补的处理方法,以更好地理解真皮的力学响应:a)一种分析处理方法,其中包括原纤维的刚性、原纤维间的摩擦滑动以及侧向纤维对原纤维延伸的影响;b)一种粗粒化分子动力学模型,其中包含模拟纤维的平行弯曲原纤维阵列。原纤维间的摩擦滑动和刚性也被捕获。分析和分子动力学模型都在与胶原纤维波长 (~10 µm) 兼容的尺度上运行。这里提出的本构描述包含了在真皮变形过程中发生的重要物理过程,因此代表了对这些现象理解的进步。
皮肤真皮在拉伸变形过程中的微观结构观察表明,纤维的解开涉及到一个复杂的三维过程,该过程复制了编织的效果。为了更好地理解真皮的力学响应,我们开发了两种互补的本构建模处理方法:一种分析处理方法,其中包含原纤维的刚性、原纤维间的滑动以及横向纤维的影响;另一种粗粒化分子动力学模型,描述了原纤维束的捆绑效应。当前研究的一个重要新颖之处在于认识到三维胶原纤维排列在真皮的力学响应中起着重要作用。这里提出的本构描述包含了在真皮变形过程中发生的物理过程,因此代表了对这些现象理解的进步。