Suppr超能文献

鱼皮卓越的损伤耐受性。

Superior Damage Tolerance of Fish Skins.

作者信息

Zhang Emily, Tung Chi-Huan, Feng Luyi, Zhou Yu Ren

机构信息

State College Area High School, State College, PA 16801, USA.

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Materials (Basel). 2023 Jan 19;16(3):953. doi: 10.3390/ma16030953.

Abstract

Skin is the largest organ of many animals. Its protective function against hostile environments and predatorial attack makes high mechanical strength a vital characteristic. Here, we measured the mechanical properties of bass fish skins and found that fish skins are highly ductile with a rupture strain of up to 30-40% and a rupture strength of 10-15 MPa. The fish skins exhibit a strain-stiffening behavior. Stretching can effectively eliminate the stress concentrations near the pre-existing holes and edge notches, suggesting that the skins are highly damage tolerant. Our measurement determined a flaw-insensitivity length that exceeds those of most engineering materials. The strain-stiffening and damage tolerance of fish skins are explained by an agent-based model of a collagen network in which the load-bearing collagen microfibers assembled from nanofibrils undergo straightening and reorientation upon stretching. Our study inspires the development of artificial skins that are thin, flexible, but highly fracture-resistant and widely applicable in soft robots.

摘要

皮肤是许多动物最大的器官。其抵御恶劣环境和捕食者攻击的保护功能使得高机械强度成为一项至关重要的特性。在此,我们测量了鲈鱼皮的力学性能,发现鱼皮具有很高的延展性,断裂应变高达30 - 40%,断裂强度为10 - 15兆帕。鱼皮表现出应变硬化行为。拉伸可有效消除预先存在的孔洞和边缘缺口附近的应力集中,这表明鱼皮具有很高的损伤耐受性。我们的测量确定了一个缺陷不敏感长度,该长度超过了大多数工程材料的相应长度。鱼皮的应变硬化和损伤耐受性可通过基于胶原蛋白网络的代理模型来解释,在该模型中,由纳米纤维组装而成的承载胶原蛋白微纤维在拉伸时会发生伸直和重新定向。我们的研究推动了人造皮肤的开发,这种人造皮肤薄且柔韧,但具有很高的抗断裂性,可广泛应用于软体机器人。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b11/9918016/f0da8f1011ab/materials-16-00953-g001.jpg

相似文献

1
Superior Damage Tolerance of Fish Skins.
Materials (Basel). 2023 Jan 19;16(3):953. doi: 10.3390/ma16030953.
2
Bioinspired fabrication and characterization of a synthetic fish skin for the protection of soft materials.
ACS Appl Mater Interfaces. 2015 Mar 18;7(10):5972-83. doi: 10.1021/acsami.5b00258. Epub 2015 Mar 9.
3
An Invariant-Based Damage Model for Human and Animal Skins.
Ann Biomed Eng. 2016 Oct;44(10):3109-3122. doi: 10.1007/s10439-016-1603-9. Epub 2016 Apr 11.
4
Natural stiffening increases flaw tolerance of biological fibers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041902. doi: 10.1103/PhysRevE.86.041902. Epub 2012 Oct 8.
5
Mechanically Robust, Elastic, and Healable Ionogels for Highly Sensitive Ultra-Durable Ionic Skins.
Adv Mater. 2020 Aug;32(32):e2002706. doi: 10.1002/adma.202002706. Epub 2020 Jun 26.
6
Squid-Inspired Anti-Salt Skin-Like Elastomers With Superhigh Damage Resistance for Aquatic Soft Robots.
Adv Mater. 2024 Nov;36(44):e2406480. doi: 10.1002/adma.202406480. Epub 2024 Sep 12.
7
A Flexible Escape Skin Bioinspired by the Defensive Behavior of Shedding Scales.
Soft Robot. 2024 Apr;11(2):296-307. doi: 10.1089/soro.2022.0211. Epub 2023 Oct 18.
9
Mechanical properties of striped bass fish skin: Evidence of an exotendon function of the stratum compactum.
J Mech Behav Biomed Mater. 2017 Sep;73:28-37. doi: 10.1016/j.jmbbm.2016.09.031. Epub 2016 Sep 28.
10
On the tear resistance of skin.
Nat Commun. 2015 Mar 27;6:6649. doi: 10.1038/ncomms7649.

本文引用的文献

1
Fracture Toughness and Fatigue Threshold of Tough Hydrogels.
ACS Macro Lett. 2019 Jan 15;8(1):17-23. doi: 10.1021/acsmacrolett.8b00788. Epub 2018 Dec 17.
2
Structural and mechanical properties of fish scales for the bio-inspired design of flexible body armors: A review.
Acta Biomater. 2021 Feb;121:41-67. doi: 10.1016/j.actbio.2020.12.003. Epub 2020 Dec 5.
3
Collagen fiber interweaving is central to sclera stiffness.
Acta Biomater. 2020 Sep 1;113:429-437. doi: 10.1016/j.actbio.2020.06.026. Epub 2020 Jun 23.
4
Unique morphology and mechanical property of Chinese sturgeon (Acipenser sinensis) fish skin.
IET Nanobiotechnol. 2020 Jun;14(4):281-288. doi: 10.1049/iet-nbt.2019.0297.
5
Constitutive description of skin dermis: Through analytical continuum and coarse-grained approaches for multi-scale understanding.
Acta Biomater. 2020 Apr 1;106:208-224. doi: 10.1016/j.actbio.2020.01.026. Epub 2020 Jan 31.
7
Mechanical properties of striped bass fish skin: Evidence of an exotendon function of the stratum compactum.
J Mech Behav Biomed Mater. 2017 Sep;73:28-37. doi: 10.1016/j.jmbbm.2016.09.031. Epub 2016 Sep 28.
8
On the tear resistance of skin.
Nat Commun. 2015 Mar 27;6:6649. doi: 10.1038/ncomms7649.
9
Protective role of Arapaima gigas fish scales: structure and mechanical behavior.
Acta Biomater. 2014 Aug;10(8):3599-614. doi: 10.1016/j.actbio.2014.04.009. Epub 2014 May 9.
10
Puncture resistance of the scaled skin from striped bass: collective mechanisms and inspiration for new flexible armor designs.
J Mech Behav Biomed Mater. 2013 Aug;24:30-40. doi: 10.1016/j.jmbbm.2013.04.011. Epub 2013 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验