Laboratory of Image Science and Technology (LIST), School of Computer Science and Engineering, Southeast University, Nanjing 210096, China; Univ Rennes, INSERM, LTSI-UMR 1099, F-35000 Rennes, France; Univ Rennes, Southeast University, INSERM, Centre de Recherche en Information Biomédicale sino-français (CRIBs)- LIA, F-35000 Rennes, France.
Univ Rennes, INSERM, LTSI-UMR 1099, F-35000 Rennes, France; Univ Rennes, Southeast University, INSERM, Centre de Recherche en Information Biomédicale sino-français (CRIBs)- LIA, F-35000 Rennes, France.
Med Image Anal. 2020 Apr;61:101637. doi: 10.1016/j.media.2020.101637. Epub 2020 Jan 15.
IntraVoxel Incoherent Motion (IVIM) Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is of great interest for evaluating tissue diffusion and perfusion and producing parametric maps in clinical applications for liver pathologies. However, the presence of macroscopic blood vessels (not capillaries) in a given Region of Interest (ROI) results in a confounding effect that bias the quantification of tissue perfusion. Therefore, it is necessary to identify those voxels affected by blood vessels. In this paper, an efficient algorithm for an automatic identification of blood vessels in a given ROI is proposed. It relies on the sparsity of the spatial distribution of blood vessels. This sparsity prior can be easily incorporated using the all-voxel IVIM-MRI model introduced in this paper. In addition to the identification of blood vessels, the proposed algorithm provides a quantification of blood vessels, tissue diffusion and tissue perfusion of all voxels in a given ROI, in one single step. Besides, two strategies are proposed in this paper to deal with the nonnegativity of the model parameters. The efficiency of the proposed algorithm compared to the Non-Negative Least Square (NNLS)-based method, recently introduced to deal with the confounding blood vessel effect in the IVIM-MRI model, is confirmed using both realistic and real DW-MR images.
体素内不相干运动(IVIM)扩散加权磁共振成像(DW-MRI)在评估组织扩散和灌注以及在肝脏病变的临床应用中产生参数图方面具有重要意义。然而,在给定的感兴趣区域(ROI)中存在宏观血管(不是毛细血管)会导致混杂效应,从而影响组织灌注的定量。因此,有必要识别那些受血管影响的体素。本文提出了一种用于在给定 ROI 中自动识别血管的有效算法。它依赖于血管空间分布的稀疏性。这种稀疏性先验可以很容易地使用本文中引入的所有体素 IVIM-MRI 模型来合并。除了识别血管外,所提出的算法还提供了一种在单个步骤中对给定 ROI 中所有体素的血管、组织扩散和组织灌注进行定量的方法。此外,本文提出了两种策略来处理模型参数的非负性。使用真实和实际的 DW-MR 图像验证了所提出的算法与最近引入的基于非负最小二乘(NNLS)方法相比的效率,该方法用于处理 IVIM-MRI 模型中的混杂血管效应。