Department of Biological Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan.
Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
J Biol Chem. 2020 Mar 20;295(12):3982-3989. doi: 10.1074/jbc.RA119.011541. Epub 2020 Feb 3.
Axonemal dynein is a microtubule-based molecular motor that drives ciliary/flagellar beating in eukaryotes. In axonemal dynein, the outer-arm dynein (OAD) complex, which comprises three heavy chains (α, β, and γ), produces the main driving force for ciliary/flagellar motility. It has recently been shown that axonemal dynein light chain-1 (LC1) binds to the microtubule-binding domain (MTBD) of OADγ, leading to a decrease in its microtubule-binding affinity. However, it remains unclear how LC1 interacts with the MTBD and controls the microtubule-binding affinity of OADγ. Here, we have used X-ray crystallography and pulldown assays to examine the interaction between LC1 and the MTBD, identifying two important sites of interaction in the MTBD. Solving the LC1-MTBD complex from at 1.7 Å resolution, we observed that one site is located in the H5 helix and that the other is located in the flap region that is unique to some axonemal dynein MTBDs. Mutational analysis of key residues in these sites indicated that the H5 helix is the main LC1-binding site. We modeled the ternary structure of the LC1-MTBD complex bound to microtubules based on the known dynein-microtubule complex. This enabled us to propose a structural basis for both formations of the ternary LC1-MTBD-microtubule complex and LC1-mediated tuning of MTBD binding to the microtubule, suggesting a molecular model for how axonemal dynein senses the curvature of the axoneme and tunes ciliary/flagellar beating.
轴丝动力蛋白是一种基于微管的分子马达,它驱动真核生物的纤毛/鞭毛运动。在轴丝动力蛋白中,外臂动力蛋白(OAD)复合物由三个重链(α、β和γ)组成,产生了纤毛/鞭毛运动的主要驱动力。最近的研究表明,轴丝动力蛋白轻链-1(LC1)与 OADγ 的微管结合域(MTBD)结合,导致其微管结合亲和力降低。然而,LC1 如何与 MTBD 相互作用并控制 OADγ 的微管结合亲和力仍不清楚。在这里,我们使用 X 射线晶体学和下拉实验来研究 LC1 和 MTBD 之间的相互作用,确定了 MTBD 中两个重要的相互作用位点。解析了来自的 LC1-MTBD 复合物的晶体结构,分辨率为 1.7 Å,我们观察到一个位点位于 H5 螺旋中,另一个位点位于 flap 区域,该区域是某些轴丝动力蛋白 MTBD 所特有的。对这些位点关键残基的突变分析表明,H5 螺旋是 LC1 的主要结合位点。我们根据已知的动力蛋白-微管复合物,构建了 LC1-MTBD 复合物与微管结合的三元结构模型。这使我们能够提出 LC1-MTBD-微管三元复合物形成和 LC1 介导的 MTBD 与微管结合的结构基础,为轴丝动力蛋白如何感知轴丝的曲率并调节纤毛/鞭毛运动提供了分子模型。