Suppr超能文献

神经极性编码的原始类别。

Primal categories of neural polarity codes.

作者信息

Baram Yoram

机构信息

Computer Science Department, Technion- Israel Institute of Technology, 32000 Haifa, Israel.

出版信息

Cogn Neurodyn. 2020 Feb;14(1):125-135. doi: 10.1007/s11571-019-09552-x. Epub 2019 Aug 21.

Abstract

Neuronal membrane and synapse polarities have been attracting considerable interest in recent years. Certain functional roles for such polarities have been suggested, yet, they have largely remained a subject for speculation and debate. Here, we note that neural circuit polarity codes, defined as sets of polarity permutations, divide into primal-size circuit polarity subcodes, which, sharing certain connectivity attributes, are called Two long-debated, seemingly competing paradigms of neuronal self-feedback, namely, axonal discharge and synaptic mediation, are shown to jointly define the distinction between these categories. However, as the second paradigm contains the first, it is mathematically sufficient for complete specification of all categories. The analysis of primal-size circuit polarity categories is found to reveal, explain and extend experimentally observed cortical information capacity values termed "magical numbers", associated with "working memory". While these have been previously argued on grounds of psychological experiments, here they are further supported on analytic grounds by the so-called Hebbian memory paradigm. The information dimensionality associated with these capacities is found to be a consequence of prime factorization of composite circuit polarity code sizes. Different categories of circuit polarity, identical in size and neuronal parameters, are shown to generate different firing rate dynamics.

摘要

近年来,神经元膜和突触极性一直备受关注。人们已经提出了这些极性的某些功能作用,但在很大程度上,它们仍然是推测和争论的主题。在这里,我们注意到,神经回路极性编码(定义为极性排列集)分为原始大小的回路极性子编码,这些子编码具有某些共同的连接属性,被称为 长期以来备受争议的两种看似相互竞争的神经元自我反馈范式,即轴突放电和突触介导,被证明共同定义了这些类别之间的区别。然而,由于第二种范式包含第一种范式,从数学上来说,它足以完整地指定所有类别。对原始大小的回路极性类别的分析表明,它揭示、解释并扩展了实验观察到的与“工作记忆”相关的皮质信息容量值,即所谓的“神奇数字”。虽然这些值此前已基于心理学实验进行了论证,但在这里,它们通过所谓的赫布记忆范式在分析基础上得到了进一步支持。发现与这些容量相关的信息维度是复合回路极性编码大小的质因数分解的结果。大小和神经元参数相同的不同类别的回路极性被证明会产生不同的放电率动态。

相似文献

1
Primal categories of neural polarity codes.神经极性编码的原始类别。
Cogn Neurodyn. 2020 Feb;14(1):125-135. doi: 10.1007/s11571-019-09552-x. Epub 2019 Aug 21.
2
Circuit Polarity Effect of Cortical Connectivity, Activity, and Memory.皮层连接、活动和记忆的回路极性效应。
Neural Comput. 2018 Nov;30(11):3037-3071. doi: 10.1162/neco_a_01128. Epub 2018 Sep 14.
3
Probabilistically segregated neural circuits and subcritical linguistics.概率性分离的神经回路与亚临界语言学
Cogn Neurodyn. 2020 Dec;14(6):837-848. doi: 10.1007/s11571-020-09602-9. Epub 2020 Jun 19.
4
Primal-size neural circuits in meta-periodic interaction.处于元周期相互作用中的原始大小神经回路。
Cogn Neurodyn. 2021 Apr;15(2):359-367. doi: 10.1007/s11571-020-09613-6. Epub 2020 Jul 1.
6
Neural plasticity and behavior - sixty years of conceptual advances.神经可塑性与行为——六十年的概念进展
J Neurochem. 2016 Oct;139 Suppl 2:179-199. doi: 10.1111/jnc.13580. Epub 2016 Mar 10.
7
Salient features of synaptic organisation in the cerebral cortex.大脑皮质突触组织的显著特征。
Brain Res Brain Res Rev. 1998 May;26(2-3):113-35. doi: 10.1016/s0165-0173(97)00061-1.

引用本文的文献

1
Primal-size neural circuits in meta-periodic interaction.处于元周期相互作用中的原始大小神经回路。
Cogn Neurodyn. 2021 Apr;15(2):359-367. doi: 10.1007/s11571-020-09613-6. Epub 2020 Jul 1.

本文引用的文献

1
Circuit Polarity Effect of Cortical Connectivity, Activity, and Memory.皮层连接、活动和记忆的回路极性效应。
Neural Comput. 2018 Nov;30(11):3037-3071. doi: 10.1162/neco_a_01128. Epub 2018 Sep 14.
6
Dynamical origin of the effective storage capacity in the brain's working memory.大脑工作记忆中有效存储容量的动力学起源。
Phys Rev Lett. 2009 Nov 20;103(21):218101. doi: 10.1103/PhysRevLett.103.218101. Epub 2009 Nov 19.
9
Key regulators in neuronal polarity.神经元极性的关键调节因子。
Neuron. 2005 Dec 22;48(6):881-4. doi: 10.1016/j.neuron.2005.11.007.
10
Microstructure of a spatial map in the entorhinal cortex.内嗅皮质中空间图谱的微观结构。
Nature. 2005 Aug 11;436(7052):801-6. doi: 10.1038/nature03721. Epub 2005 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验