Hafting Torkel, Fyhn Marianne, Molden Sturla, Moser May-Britt, Moser Edvard I
Centre for the Biology of Memory, Norwegian University of Science and Technology, 7489 Trondheim, Norway.
Nature. 2005 Aug 11;436(7052):801-6. doi: 10.1038/nature03721. Epub 2005 Jun 19.
The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.
导航能力依赖于整合位置、距离和方向信息的神经算法,但这些运算在皮质微回路中的实现方式却鲜为人知。我们在此表明,背尾侧内侧内嗅皮质(dMEC)包含一个空间环境的定向、拓扑组织的神经图谱。其关键单元是“网格细胞”,每当动物的位置与跨越环境表面的等边三角形规则网格的任何顶点重合时,该细胞就会被激活。相邻细胞的网格具有共同的方向和间距,但其顶点位置(相位)不同。从背侧到腹侧的dMEC,单个场域的间距和大小逐渐增加。该图谱以外部地标为锚定,但在地标缺失时仍持续存在,这表明网格细胞可能是基于路径整合的广义空间环境图谱的一部分。