Vadde Batthula Vijaya Lakshmi, Roeder Adrienne H K
Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, USA.
J Exp Bot. 2020 May 30;71(10):2886-2897. doi: 10.1093/jxb/eraa065.
It has been 50 years since Lewis Wolpert introduced the French flag model proposing the patterning of different cell types based on threshold concentrations of a morphogen diffusing in the tissue. Sixty-seven years ago, Alan Turing introduced the idea of patterns initiating de novo from a reaction-diffusion network. Together these models have been used to explain many patterning events in animal development, so here we take a look at their applicability to flower development. First, although many plant transcription factors move through plasmodesmata from cell to cell, in the flower there is little evidence that they specify fate in a concentration-dependent manner, so they cannot yet be described as morphogens. Secondly, the reaction-diffusion model appears to be a reasonably good description of the formation of spots of pigment on petals, although additional nuances are present. Thirdly, aspects of both of these combine in a new fluctuation-based patterning system creating the scattered pattern of giant cells in Arabidopsis sepals. In the future, more precise imaging and manipulations of the dynamics of patterning networks combined with mathematical modeling will allow us to better understand how the multilayered complex and beautiful patterns of flowers emerge de novo.
自刘易斯·沃尔珀特提出法国国旗模型以来已有50年,该模型基于在组织中扩散的形态发生素的阈值浓度提出了不同细胞类型的模式形成。67年前,艾伦·图灵提出了从反应扩散网络中从头开始形成模式的想法。这些模型共同被用于解释动物发育中的许多模式形成事件,所以在这里我们来看看它们对花发育的适用性。首先,尽管许多植物转录因子通过胞间连丝在细胞间移动,但在花中几乎没有证据表明它们以浓度依赖的方式决定细胞命运,所以它们目前还不能被描述为形态发生素。其次,反应扩散模型似乎对花瓣上色素斑点的形成给出了相当不错的描述,尽管还存在一些其他细微差别。第三,这两种模型的某些方面结合在一个新的基于波动的模式形成系统中,形成了拟南芥萼片中巨大细胞的分散模式。未来,对模式形成网络动态进行更精确的成像和操作,并结合数学建模,将使我们能够更好地理解花的多层复杂而美丽的模式是如何从头出现的。