Suppr超能文献

基于卷积神经网络的乳腺 CT 图像模型观察器。

A convolutional neural network-based model observer for breast CT images.

机构信息

School of Integrated Technology and Yonsei Institute of Convergence Technology, Yonsei University, 162-1, Incheon, South Korea.

出版信息

Med Phys. 2020 Apr;47(4):1619-1632. doi: 10.1002/mp.14072. Epub 2020 Feb 29.

Abstract

PURPOSE

In this paper, we propose a convolutional neural network (CNN)-based efficient model observer for breast computed tomography (CT) images.

METHODS

We first showed that the CNN-based model observer provided similar detection performance to the ideal observer (IO) for signal-known-exactly and background-known-exactly detection tasks with an uncorrelated Gaussian background noise image. We then demonstrated that a single-layer CNN without a nonlinear activation function provided similar detection performance in breast CT images to the Hotelling observer (HO). To train the CNN-based model observer, we generated simulated breast CT images to produce a training dataset in which different background noise structures were generated using filtered back projection with a ramp, or a Hanning weighted ramp, filter. Circular, elliptical, and spiculated signals were used for the detection tasks. The optimal depth and the number of channels for the CNN-based model observer were determined for each task. The detection performances of the HO and a channelized Hotelling observer (CHO) with Laguerre-Gauss (LG) and partial least squares (PLS) channels were also estimated for comparison.

RESULTS

The results showed that the CNN-based model observer provided higher detection performance than the HO, LG-CHO, and PLS-CHO for all tasks. In addition, it was shown that the proposed CNN-based model observer provided higher detection performance than the HO using a smaller training dataset.

CONCLUSIONS

In the presence of nonlinearity in the CNN, the proposed CNN-based model observer showed better performance than other linear observers.

摘要

目的

在本文中,我们提出了一种基于卷积神经网络(CNN)的高效乳房计算机断层扫描(CT)图像模型观测器。

方法

我们首先表明,对于信号完全已知和背景完全已知的检测任务,基于 CNN 的模型观测器与理想观测器(IO)提供了相似的检测性能,其背景噪声图像为不相关的高斯噪声图像。然后,我们证明了没有非线性激活函数的单层 CNN 在乳房 CT 图像中提供了与霍特林观测器(HO)相似的检测性能。为了训练基于 CNN 的模型观测器,我们生成了模拟的乳房 CT 图像,以产生一个训练数据集,其中使用滤波反投影生成不同的背景噪声结构,滤波器为斜坡滤波器或汉宁加权斜坡滤波器。圆形、椭圆形和刺状信号用于检测任务。为每个任务确定了基于 CNN 的模型观测器的最优深度和通道数。还估计了 HO 和具有拉盖尔-高斯(LG)和偏最小二乘(PLS)通道的信道霍特林观测器(CHO)的检测性能进行比较。

结果

结果表明,对于所有任务,基于 CNN 的模型观测器的检测性能均高于 HO、LG-CHO 和 PLS-CHO。此外,还表明与 HO 相比,该方法使用较小的训练数据集提供了更高的检测性能。

结论

在 CNN 中存在非线性的情况下,所提出的基于 CNN 的模型观测器的性能优于其他线性观测器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验