Suppr超能文献

基于卷积神经网络的乳腺断层合成图像信号统计任务模型观测器。

Convolutional neural network-based model observer for signal known statistically task in breast tomosynthesis images.

机构信息

School of Integrated Technology Yonsei University, Seoul, South Korea.

Department of Artificial Intelligence, College of Computing, Yonsei University, Seoul, South Korea.

出版信息

Med Phys. 2023 Oct;50(10):6390-6408. doi: 10.1002/mp.16395. Epub 2023 Apr 9.

Abstract

BACKGROUND

Since human observer studies are resource-intensive, mathematical model observers are frequently used to assess task-based image quality. The most common implementation of these model observers assume that the signal information is exactly known. However, these tasks cannot thoroughly represent situations where the signal information is not exactly known in terms of size and shape.

PURPOSE

Considering the limitations of the tasks for which signal information is exactly known, we proposed a convolutional neural network (CNN)-based model observer for signal known statistically (SKS) and background known statistically (BKS) detection tasks in breast tomosynthesis images.

METHODS

A wide parameter search was conducted from six different acquisition angles (i.e., 10°, 20°, 30°, 40°, 50°, and 60°) within the same dose level (i.e., 2.3 mGy) under two separate acquisition schemes: (1) constant total number of projections, and (2) constant angular separation between projections. Two different types of signals: spherical (i.e., SKE tasks) and spiculated (i.e., SKS tasks) were used. The detection performance of the CNN-based model observer was compared with that of the Hotelling observer (HO) instead of the IO. Pixel-wise gradient-weighted class activation mapping (pGrad-CAM) map was extracted from each reconstructed tomosynthesis image to provide an intuitive understanding of the trained CNN-based model observer.

RESULTS

The CNN-based model observer achieved a higher detection performance compared to that of the HO for all tasks. Moreover, the improvement in its detection performance was greater for SKS tasks compared to that for SKE tasks. These results demonstrated that the addition of nonlinearity improved the detection performance owing to the variation of the background and signal. Interestingly, the pGrad-CAM results effectively localized the class-specific discriminative region, further supporting the quantitative evaluation results of the CNN-based model observer. In addition, we verified that the CNN-based model observer required fewer images to achieve the detection performance of the HO.

CONCLUSIONS

In this work, we proposed a CNN-based model observer for SKS and BKS detection tasks in breast tomosynthesis images. Throughout the study, we demonstrated that the detection performance of the proposed CNN-based model observer was superior to that of the HO.

摘要

背景

由于人体观察者研究需要大量资源,因此经常使用数学模型观察者来评估基于任务的图像质量。这些模型观察者的最常见实现假设信号信息是完全已知的。然而,这些任务并不能完全代表信号信息在大小和形状方面并不完全已知的情况。

目的

鉴于对信号信息完全已知的任务的局限性,我们提出了一种基于卷积神经网络(CNN)的模型观察者,用于乳腺断层合成图像中的信号已知统计(SKS)和背景已知统计(BKS)检测任务。

方法

在相同剂量水平(即 2.3 mGy)下,从六个不同采集角度(即 10°、20°、30°、40°、50°和 60°)进行了广泛的参数搜索,采用两种不同的采集方案:(1)投影总数固定,(2)投影之间的角度间隔固定。使用了两种不同类型的信号:球形(即 SKE 任务)和刺状(即 SKS 任务)。将基于 CNN 的模型观察者的检测性能与霍特林观察者(HO)的检测性能进行了比较,而不是与 IO 进行比较。从每个重建的断层合成图像中提取了像素级梯度加权类激活映射(pGrad-CAM)图,以直观地了解经过训练的基于 CNN 的模型观察者。

结果

与 HO 相比,基于 CNN 的模型观察者在所有任务中都实现了更高的检测性能。此外,与 SKE 任务相比,SKS 任务的检测性能提高更大。这些结果表明,由于背景和信号的变化,添加非线性可以提高检测性能。有趣的是,pGrad-CAM 结果有效地定位了类特定的判别区域,进一步支持了基于 CNN 的模型观察者的定量评估结果。此外,我们验证了基于 CNN 的模型观察者需要更少的图像来实现 HO 的检测性能。

结论

在这项工作中,我们提出了一种用于乳腺断层合成图像中的 SKS 和 BKS 检测任务的基于 CNN 的模型观察者。在整个研究过程中,我们证明了所提出的基于 CNN 的模型观察者的检测性能优于 HO。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验