Suppr超能文献

一种提高流式细胞仪检测细胞外囊泡散射灵敏度的系统方法。

A Systematic Approach to Improve Scatter Sensitivity of a Flow Cytometer for Detection of Extracellular Vesicles.

机构信息

Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.

Laboratory Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

Cytometry A. 2020 Jun;97(6):582-591. doi: 10.1002/cyto.a.23974. Epub 2020 Feb 4.

Abstract

Extracellular vesicles (EVs) are commonly studied by flow cytometry. Due to their small size and low refractive index, the scatter intensity of most EVs is below the detection limit of common flow cytometers. Here, we aim to improve forward scatter (FSC) and side scatter (SSC) sensitivity of a common flow cytometer to detect single 100 nm EVs. The effects of the optical and fluidics configuration on scatter sensitivity of a FACSCanto (Becton Dickinson) were evaluated by the separation index (SI) and robust coefficient of variation (rCV) of polystyrene beads (BioCytex). Improvement is defined as increased SI and/or reduced rCV. Changing the obscuration bar improved the rCV 1.9-fold for FSC. A 10-fold increase in laser power improved the SI 19-fold for FSC and 4.4-fold for SSC, whereas the rCV worsened 0.8-fold and improved 1.5-fold, respectively. Confocalization worsened the SI 1.2-fold for FSC, and improved the SI 5.1-fold for SSC, while the rCV improved 1.1-fold and worsened 1.5-fold, respectively. Replacing the FSC photodiode with a photomultiplier tube improved the SI 66-fold and rCV 4.2-fold. A 2-fold reduction in sample stream width improved both SI and rCV for FSC by 1.8-fold, and for SSC by 1.3- and 2.2-fold, respectively. Decreasing the sample flow velocity worsened rCVs. Decreasing the flow channel dimensions and the pore size of the sheath filter did not substantially change the SI or rCV. Using the optimal optical configuration and fluidics settings, the SI improved 3.8∙10 -fold on FSC and 30-fold on SSC, resulting in estimated detection limits for EVs (assuming a refractive index of 1.40) of 246 and 91 nm on FSC and SSC, respectively. Although a 50-fold improvement on FSC is still necessary, these adaptions have produced an operator-friendly, high-throughput flow cytometer with a high sensitivity on both SSC and FSC. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.

摘要

细胞外囊泡 (EVs) 通常通过流式细胞术进行研究。由于其体积小、折射率低,大多数 EVs 的散射强度低于普通流式细胞仪的检测极限。在这里,我们旨在提高普通流式细胞仪检测单 100nm EVs 的前向散射 (FSC) 和侧向散射 (SSC) 的灵敏度。通过聚苯乙烯珠 (BioCytex) 的分离指数 (SI) 和稳健变异系数 (rCV) 评估了光学和流体配置对 FACSCanto (Becton Dickinson) 散射灵敏度的影响。改进定义为 SI 增加和/或 rCV 降低。改变遮光条可使 FSC 的 rCV 提高 1.9 倍。激光功率增加 10 倍可使 FSC 的 SI 提高 19 倍,SSC 的 SI 提高 4.4 倍,而 rCV 分别恶化 0.8 倍和提高 1.5 倍。共聚焦使 FSC 的 SI 恶化 1.2 倍,SSC 的 SI 提高 5.1 倍,而 rCV 分别提高 1.1 倍和恶化 1.5 倍。用光电倍增管代替 FSC 光电二极管可使 SI 提高 66 倍,rCV 提高 4.2 倍。样品流宽降低 2 倍可使 FSC 的 SI 和 rCV 分别提高 1.8 倍,SSC 的 SI 和 rCV 分别提高 1.3 倍和 2.2 倍。降低样品流速会使 rCV 恶化。降低流道尺寸和鞘液过滤器的孔径不会显著改变 SI 或 rCV。使用最佳的光学配置和流体力学设置,FSC 的 SI 提高了 3.8×10 -1 倍,SSC 的 SI 提高了 30 倍,从而得出 EVs 的估计检测限(假设折射率为 1.40)分别为 FSC 和 SSC 的 246nm 和 91nm。尽管 FSC 仍需要提高 50 倍,但这些改进产生了一种操作友好、高通量的流式细胞仪,在 SSC 和 FSC 上都具有很高的灵敏度。2020 年作者。流式细胞术部分由 Wiley Periodicals, Inc. 代表国际细胞分析促进协会出版。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/922d/7383638/daeb2e0ef003/CYTO-97-582-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验