Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Application Cytometry, Cytek Biosciences, Inc, Seattle, Washington, USA.
Cytometry A. 2024 Oct;105(10):752-762. doi: 10.1002/cyto.a.24895. Epub 2024 Sep 5.
Imaging flow cytometry (IFCM) is a technique that can detect, size, and phenotype extracellular vesicles (EVs) at high throughput (thousands/minute) in complex biofluids without prior EV isolation. However, the generated signals are expressed in arbitrary units, which hinders data interpretation and comparison of measurement results between instruments and institutes. While fluorescence calibration can be readily achieved, calibration of side scatter (SSC) signals presents an ongoing challenge for IFCM. Here, we present an approach to relate the SSC signals to particle size for IFCM, and perform a comparability study between three different IFCMs using a plasma EV test sample (PEVTES). SSC signals for different sizes of polystyrene (PS) and hollow organosilica beads (HOBs) were acquired with a 405 nm 120 mW laser without a notch filter before detection. Mie theory was applied to relate scatter signals to particle size. Fluorescence calibration was accomplished with 2 μm phycoerythrin (PE) and allophycocyanin (APC) MESF beads. Size and fluorescence calibration was performed for three IFCMs in two laboratories. CD235a-PE and CD61-APC stained PEVTES were used as EV-containing samples. EV concentrations were compared between instruments within a size range of 100-1000 nm and a fluorescence intensity range of 3-10,000 MESF. 81 nm PS beads could be readily discerned from background based on their SSC signals. Fitting of the obtained PS bead SSC signals with Mie theory resulted in a coefficient of determination >0.99 between theory and data for all three IFCMs. 216 nm HOBs were detected with all instruments, and confirmed the sensitivity to detect EVs by SSC. The lower limit of detection regarding EV-size for this study was determined to be ~100 nm for all instruments. Size and fluorescence calibration of IFCM data increased cross-instrument data comparability with the coefficient of variation decreasing from 33% to 21%. Here we demonstrate - for the first time - scatter calibration of an IFCM using the 405 nm laser. The quality of the scatter-to-diameter relation and scatter sensitivity of the IFCMs are similar to the most sensitive commercially available flow cytometers. This development will support the reliability of EV research with IFCM by providing robust standardization and reproducibility, which are pre-requisites for understanding the biological significance of EVs.
成像流式细胞术(IFCM)是一种能够在复杂的生物流体中以高通量(每分钟数千个)检测、大小和表型鉴定细胞外囊泡(EVs)的技术,而无需事先进行 EV 分离。然而,生成的信号以任意单位表示,这阻碍了数据解释和不同仪器和研究所之间的测量结果比较。荧光校准可以很容易地实现,而 IFCM 的侧向散射(SSC)信号校准仍然是一个挑战。在这里,我们提出了一种将 SSC 信号与 IFCM 中颗粒大小相关联的方法,并使用血浆 EV 测试样本(PEVTES)对三种不同的 IFCM 进行了可比性研究。在检测之前,使用没有缺口滤波器的 405nm 120mW 激光获取不同大小的聚苯乙烯(PS)和空心有机硅珠(HOB)的 SSC 信号。应用 Mie 理论将散射信号与颗粒大小相关联。使用 2μm 藻红蛋白(PE)和别藻蓝蛋白(APC)MESF 珠完成荧光校准。在两个实验室中对三种 IFCM 进行了大小和荧光校准。使用 CD235a-PE 和 CD61-APC 染色的 PEVTES 作为含有 EV 的样品。在 100-1000nm 的粒径范围和 3-10000MESF 的荧光强度范围内,在仪器之间比较了 EV 浓度。81nm PS 珠可以根据其 SSC 信号很容易从背景中分辨出来。用 Mie 理论拟合获得的 PS 珠 SSC 信号,对于所有三种 IFCM,理论与数据之间的决定系数>0.99。所有仪器都可以检测到 216nm 的 HOB,证实了 SSC 检测 EV 的灵敏度。本研究中 EV 大小的检测下限确定为所有仪器均为~100nm。IFCM 数据的大小和荧光校准增加了仪器间数据的可比性,变异系数从 33%降低到 21%。在这里,我们首次展示了使用 405nm 激光对 IFCM 进行散射校准。IFCM 的散射与直径关系的质量和散射灵敏度与最灵敏的市售流式细胞仪相似。这种发展将通过提供稳健的标准化和可重复性来支持 IFCM 中 EV 研究的可靠性,这是理解 EV 生物学意义的前提。