Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States.
Inorg Chem. 2020 Feb 17;59(4):2548-2561. doi: 10.1021/acs.inorgchem.9b03476. Epub 2020 Feb 4.
A set of bioinspired carbamoyl CNP pincer complexes are reported that are relevant to [Fe]-hydrogenase (Hmd). The species [(CNP)Fe(CO)I] [R = Ph, ; R = Pr, ] undergoes ligand deprotonation, resulting in the dearomatized complexes of formulas [(CNP)Fe(CO)] ( and ). The crystal structure and H{P} NMR spectroscopy of the iodide-bound dearomatized species [Na(18-crown-6)][(CNP)Fe(CO)I] () showed that the deprotonated moiety was the phosphoramine N(H) linkage. Separately, the complexes (CNP)Fe(CO)(MeCN) ( and ) synthesized, as well as deprotonated and dearomatized in similar fashion. Reactivity studies revealed that the parent complexes require more forceful conditions for H activation, compared with the complexes. The ligand backbone was not found to participate in H activation and H → hydride transfer to an organic substrate was not observed in either case. Density functional theory calculations revealed that the higher reactivity of the complex in H splitting could be attributed to its higher affinity for H. This behavior is attributed to two key points related to the requisite (Fe) → σ*(H) back-bonding interaction in a conventional M-H Kubas interaction: (i) generally, the weaker π donor capacity of the dicarbonyls, and (ii) specifically, the detrimental effect of a strongly π acidic CO ligand (versus weakly π acidic MeCN ligand) trans to the H activation site. The higher reactivity of the complex is also evidenced by the catalytic transfer hydrogenation by , whereas was ineffective. Overall, the results suggest that Nature uses the dicarbonyl motif in [Fe]-hydrogenase to the interaction between the Fe center and dihydrogen, thereby preventing premature H activation prior to substrate (HMPT) binding and any resulting nonspecific hydride transfer reactivity.
一组仿生氨基甲酰 CNP 钳合物被报道与 [Fe]-氢化酶(Hmd)有关。 物种 [(CNP)Fe(CO)I] [R = Ph, ;R = Pr, ]经历配体去质子化,导致配体去芳构化的配合物的化学式为 [(CNP)Fe(CO)] ( 和 )。 碘化物结合的去芳构化物种 [Na(18-冠-6)][(CNP)Fe(CO)I] ()的晶体结构和 H{P}NMR 光谱表明,去质子化部分是膦酰胺 N(H)键合。 另外,合成了配合物 (CNP)Fe(CO)(MeCN) ( 和 ),并以类似的方式进行了去质子化和去芳构化。 反应性研究表明,与 配合物相比,母体 配合物需要更强的条件才能进行 H 活化。 在这两种情况下,均未观察到配体骨架参与 H 活化,也未观察到 H → 向有机底物的氢化物转移。 密度泛函理论计算表明, 配合物在 H 分裂中更高的反应性可归因于其对 H 的更高亲和力。 这种行为归因于传统 M-H Kubas 相互作用中所需 (Fe) → σ*(H) 反键相互作用的两个关键点:(i) 通常,二羰基的 π 供电子能力较弱,和 (ii) 具体而言,强 π 酸性 CO 配体(相对于弱 π 酸性 MeCN 配体)在 H 活化位点的顺式对不利影响。 配合物更高的反应性也由 通过催化转移氢化证明,而 则无效。 总的来说,结果表明,自然界在 [Fe]-氢化酶中使用二羰基基序来 调节 Fe 中心与氢气之间的相互作用,从而防止在底物(HMPT)结合和任何由此产生的非特异性氢化物转移反应之前过早进行 H 活化。