Suppr超能文献

陆地哺乳动物惯性延迟的缩放。

Scaling of inertial delays in terrestrial mammals.

机构信息

Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.

出版信息

PLoS One. 2020 Feb 4;15(2):e0217188. doi: 10.1371/journal.pone.0217188. eCollection 2020.

Abstract

As part of its response to a perturbation, an animal often needs to reposition its body. Inertia acts to oppose the corrective motion, delaying the completion of the movement-we refer to this elapsed time as inertial delay. As animal size increases, muscle moment arms also increase, but muscles are proportionally weaker, and limb inertia is proportionally larger. Consequently, the scaling of inertial delays is complex. Our intent is to determine how quickly different sized animals can produce corrective movements when their muscles act at their force capacity, relative to the time within which those movements need to be performed. Here, we quantify inertial delay using two biomechanical models representing common scenarios in animal locomotion: a distributed mass pendulum approximating swing limb repositioning (swing task), and an inverted pendulum approximating whole body posture recovery (posture task). We parameterized the anatomical, muscular, and inertial properties of these models using literature scaling relationships, then determined inertial delay for each task across a large range of movement magnitudes and the full range of terrestrial mammal sizes. We found that inertial delays scaled with an average of M0.28 in the swing task and M0.35 in the posture task across movement magnitudes-larger animals require more absolute time to perform the same movement as small animals. The time available to complete a movement also increases with animal size, but less steeply. Consequently, inertial delays comprise a greater fraction of swing duration and other characteristic movement times in larger animals. We also compared inertial delays to the other component delays within the stimulus-response pathway. As movement magnitude increased, inertial delays exceeded these sensorimotor delays, and this occurred for smaller movements in larger animals. Inertial delays appear to be a challenge for motor control, particularly for bigger movements in larger animals.

摘要

作为对干扰的反应的一部分,动物通常需要重新定位身体。惯性作用于反对纠正运动,延迟运动的完成——我们将这段时间称为惯性延迟。随着动物体型的增加,肌肉力臂也会增加,但肌肉的比例会减弱,肢体的惯性会更大。因此,惯性延迟的缩放是复杂的。我们的目的是确定当不同大小的动物的肌肉以其力量能力作用时,它们相对于需要完成这些运动的时间,能够多快地产生纠正运动。在这里,我们使用两个生物力学模型来量化惯性延迟,这两个模型代表了动物运动中的常见情况:一个分布式质量摆,近似于摆动肢体的重新定位(摆动任务),以及一个倒立摆,近似于整个身体姿势的恢复(姿势任务)。我们使用文献缩放关系来参数化这些模型的解剖学、肌肉和惯性特性,然后确定每个任务在大范围的运动幅度和整个陆地哺乳动物范围内的惯性延迟。我们发现,在摆动任务中,惯性延迟的平均比例为 M0.28,在姿势任务中为 M0.35,这表明在运动幅度上,较大的动物比小动物需要更多的绝对时间来完成相同的运动。完成运动的可用时间也随动物体型的增加而增加,但增加幅度较小。因此,惯性延迟在较大的动物中占摆动持续时间和其他特征运动时间的更大比例。我们还将惯性延迟与刺激-反应途径中的其他组件延迟进行了比较。随着运动幅度的增加,惯性延迟超过了这些感觉运动延迟,而且这种情况在较大的动物中较小的运动中也会发生。惯性延迟似乎是运动控制的一个挑战,特别是对于较大动物中的较大运动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdb4/6999919/844d366b5ce1/pone.0217188.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验