Suppr超能文献

鼠伤寒沙门氏菌中支链氨基酸转运系统的抑制与阻遏

Repression and inhibition of transport systems for branched-chain amino acids in Salmonella typhimurium.

作者信息

Kiritani K, Ohnishi K

出版信息

J Bacteriol. 1977 Feb;129(2):589-98. doi: 10.1128/jb.129.2.589-598.1977.

Abstract

Kinetics of the transport systems common for entry of L-isoleucine, L-leucine, and L-valine in Salmonella typhimurium LT2 have been analyzed as a function of substrateconcentration in the range of 0.5 to 45 muM. The systems of transport mutants, KA203 (ilvT3) and KA204 (ilvT4), are composed of two components; apparent Km values for uptake of isoleucine, leucine, and valine by the low Km component are 2 muM, 2 to 3 muM, and 1 muM, respectively, and by the high Km component 30 muM, 20 to 40 muM, and 0.1 mM, respectively. The transport system(s) of the wild type has not been separated into components but rather displays single Km values of 9 muM for isoleucine, 10 muM for leucine, and 30 muM for valine. The transport activity of the wild type was repressed by L-leucine, alpha ketoisocaproate, glycyl-L-isoleucine, glycyl-L-leucine, and glycyl-L-methionine. That for the transport mutants was repressed by L-alanine, L-isoleucine, L-methionine, L-valine, alpha-ketoisovalerate, alpha-keto-beta-methylvalerate, glycyl-L-alanine, glycyl-L-threonine, and glycyl-L-valine, in addition to the compounds described above. Repression of the mutant transport systems resulted in disappearance of the low Km component for valine uptake, together with a decrease in Vmax of the high Km component; the kinetic analysis with isoleucine and leucine as substrates was not possible because of poor uptake. The maximum reduction of the transport activity for isoleucine was obtained after growing cells for two to three generations in a medium supplemented with repressor, and for the depression, protein synthesis was essential after removal of the repressor. The transport activity for labeled isoleucine in the transport mutant and wild-type strains was inhibited by unlabeled L-alanine, L-cysteine, L-isoleucine, L-leucine, L-methionine, L-threonine, and L-valine. D-Amino acids neither repressed nor inhibited the transport activity of cells for entry of isoleucine.

摘要

鼠伤寒沙门氏菌LT2中L-异亮氨酸、L-亮氨酸和L-缬氨酸进入细胞所共有的转运系统的动力学,已作为底物浓度在0.5至45μM范围内的函数进行了分析。转运突变体KA203(ilvT3)和KA204(ilvT4)的系统由两个组分组成;低Km组分摄取异亮氨酸、亮氨酸和缬氨酸的表观Km值分别为2μM、2至3μM和1μM,高Km组分的分别为30μM、20至40μM和0.1mM。野生型的转运系统尚未分离成组分,而是显示异亮氨酸的单一Km值为9μM,亮氨酸为10μM,缬氨酸为30μM。野生型的转运活性受到L-亮氨酸、α-酮异己酸、甘氨酰-L-异亮氨酸、甘氨酰-L-亮氨酸和甘氨酰-L-甲硫氨酸的抑制。转运突变体的转运活性除了受到上述化合物的抑制外,还受到L-丙氨酸、L-异亮氨酸、L-甲硫氨酸、L-缬氨酸、α-酮异戊酸、α-酮-β-甲基戊酸、甘氨酰-L-丙氨酸、甘氨酰-L-苏氨酸和甘氨酰-L-缬氨酸的抑制。突变体转运系统的抑制导致缬氨酸摄取的低Km组分消失,同时高Km组分的Vmax降低;由于摄取不佳,无法以异亮氨酸和亮氨酸作为底物进行动力学分析。在添加了阻遏物的培养基中培养细胞两到三代后,异亮氨酸转运活性得到最大程度的降低,而对于阻遏作用,去除阻遏物后蛋白质合成至关重要。转运突变体和野生型菌株中标记异亮氨酸的转运活性受到未标记的L-丙氨酸、L-半胱氨酸、L-异亮氨酸、L-亮氨酸、L-甲硫氨酸、L-苏氨酸和L-缬氨酸的抑制。D-氨基酸既不抑制也不抑制细胞摄取异亮氨酸的转运活性。

相似文献

1
Repression and inhibition of transport systems for branched-chain amino acids in Salmonella typhimurium.
J Bacteriol. 1977 Feb;129(2):589-98. doi: 10.1128/jb.129.2.589-598.1977.
2
Mutants of Salmonella typhimurium defective in transport of branched-chain amino acids.
J Bacteriol. 1974 Dec;120(3):1093-101. doi: 10.1128/jb.120.3.1093-1101.1974.
3
Separate regulation of transport and biosynthesis of leucine, isoleucine, and valine in bacteria.
J Bacteriol. 1975 Jun;122(3):994-1000. doi: 10.1128/jb.122.3.994-1000.1975.
4
Multiplicity of isoleucine, leucine, and valine transport systems in Escherichia coli K-12.
J Bacteriol. 1974 Feb;117(2):382-92. doi: 10.1128/jb.117.2.382-392.1974.
6
Common enzymes of branched-chain amino acid catabolism in Pseudomonas putida.
J Bacteriol. 1973 Jul;115(1):198-204. doi: 10.1128/jb.115.1.198-204.1973.
7
Escherichia coli K-12 mutants altered in the transport of branched-chain amino acids.
J Bacteriol. 1971 Dec;108(3):1034-44. doi: 10.1128/jb.108.3.1034-1044.1971.
9
10
Multiplicity of leucine transport systems in Escherichia coli K-12.
J Bacteriol. 1973 Dec;116(3):1258-66. doi: 10.1128/jb.116.3.1258-1266.1973.

引用本文的文献

1
Uptake of Branched-Chain Amino Acids by Streptococcus thermophilus.
Appl Environ Microbiol. 1983 Jan;45(1):136-40. doi: 10.1128/aem.45.1.136-140.1983.
2
Amino acid uptake and energy coupling dependent on photosynthesis in Anacystis nidulans.
J Bacteriol. 1982 Jul;151(1):229-36. doi: 10.1128/jb.151.1.229-236.1982.
3
Multiplicity of aspartate transport in thin wastewater biofilms.
Appl Environ Microbiol. 1984 Dec;48(6):1151-8. doi: 10.1128/aem.48.6.1151-1158.1984.
4
Branched-chain amino acid transport in Streptococcus agalactiae.
Appl Environ Microbiol. 1980 Jul;40(1):25-31. doi: 10.1128/aem.40.1.25-31.1980.
5
Transport of branched-chain amino acids in Corynebacterium glutamicum.
Arch Microbiol. 1989;151(3):238-44. doi: 10.1007/BF00413136.
6
Linkage map of Salmonella typhimurium, edition V.
Microbiol Rev. 1978 Jun;42(2):471-519. doi: 10.1128/mr.42.2.471-519.1978.
7
Transport systems for branched-chain amino acids in Pseudomonas aeruginosa.
J Bacteriol. 1979 Sep;139(3):705-12. doi: 10.1128/jb.139.3.705-712.1979.

本文引用的文献

2
Analysis of Michaelis kinetics for two independent, saturable membrane transport functions.
J Theor Biol. 1972 Apr;35(1):113-8. doi: 10.1016/0022-5193(72)90196-8.
3
Peptide transport and metabolism in bacteria.
Annu Rev Biochem. 1971;40:397-408. doi: 10.1146/annurev.bi.40.070171.002145.
5
6
Purification of a leucine-specific binding protein from Escherichia coli.
Biochem Biophys Res Commun. 1970 Mar 27;38(6):1076-83. doi: 10.1016/0006-291x(70)90349-9.
7
Amino acid transport systems in Escherichia coli K-12.
J Biol Chem. 1968 Nov 25;243(22):5914-20.
9
Transport of biosynthetic intermediates: regulation of homoserine and threonine uptake in Escherichia coli.
J Bacteriol. 1974 Oct;120(1):114-20. doi: 10.1128/jb.120.1.114-120.1974.
10
Transport of biosynthetic intermediates: homoserine and threonine uptake in Escherichia coli.
J Bacteriol. 1974 Mar;117(3):1002-9. doi: 10.1128/jb.117.3.1002-1009.1974.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验