Suppr超能文献

细菌中亮氨酸、异亮氨酸和缬氨酸转运与生物合成的独立调控。

Separate regulation of transport and biosynthesis of leucine, isoleucine, and valine in bacteria.

作者信息

Quay S C, Oxender D L, Tsuyumu S, Umbarger H E

出版信息

J Bacteriol. 1975 Jun;122(3):994-1000. doi: 10.1128/jb.122.3.994-1000.1975.

Abstract

Since both transport activity and the leucine biosynthetic enzymes are repressed by growth on leucine, the regulation of leucine, isoleucine, and valine biosynthetic enzymes was examined in Escherichia coli K-12 strain EO312, a constitutively derepressed branched-chain amino acid transport mutant, to determine if the transport derepression affected the biosynthetic enzymes. Neither the iluB gene product, acetohydroxy acid synthetase (acetolactate synthetase, EC 4.1.3.18), NOR THE LEUB gene product, 3-isopropylmalate dehydrogenase (2-hydroxy-4-methyl-3-carboxyvalerate-nicotinamide adenine dinucleotide oxido-reductase, EC 1.1.1.85), were significantly affected in their level of derepression or repression compared to the parental strain. A number of strains with alterations in the regulation of the branched-chain amino acid biosynthetic enzymes were examined for the regulation of the shock-sensitive transport system for these amino acids (LIV-I). When transport activity was examined in strains with mutations leading to derepression of the iluB, iluADE, and leuABCD gene clusters, the regulation of the LIV-I transport system was found to be normal. The regulation of transport in an E. coli strain B/r with a deletion of the entire leucine biosynthetic operon was normal, indicating none of the gene products of this operon are required for regulation of transport. Salmonella typhimurium LT2 strain leu-500, a single-site mutation affecting both promotor-like and operator-like function of the leuABCD gene cluster, also had normal regulation of the LIV-I transport system. All of the strains contained leucine-specific transport activity, which was also repressed by growth in media containing leucine, isoleucine and valine. The concentrated shock fluids from these strains grown in minimal medium or with excess leucine, isoleucine, and valine were examined for proteins with leucine-binding activity, and the levels of these proteins were found to be regulated normally. It appears that the branched-chain amino acid transport systems and biosynthetic enzymes in E. coli strains K-12 and B/r and in S. typhimurium strain LT2 are not regulated together by a cis-dominate type of mechanism, although both systems may have components in common.

摘要

由于亮氨酸的存在会抑制转运活性和亮氨酸生物合成酶,因此在大肠杆菌K-12菌株EO312(一种组成型去阻遏的支链氨基酸转运突变体)中研究了亮氨酸、异亮氨酸和缬氨酸生物合成酶的调控,以确定转运去阻遏是否会影响生物合成酶。与亲本菌株相比,ilvB基因产物乙酰羟酸合成酶(乙酰乳酸合成酶,EC 4.1.3.18)和leuB基因产物3-异丙基苹果酸脱氢酶(2-羟基-4-甲基-3-羧基戊酸-烟酰胺腺嘌呤二核苷酸氧化还原酶,EC 1.1.1.85)的去阻遏或阻遏水平均未受到显著影响。研究了一些支链氨基酸生物合成酶调控发生改变的菌株中这些氨基酸的休克敏感转运系统(LIV-I)的调控情况。当在导致ilvB、iluADE和leuABCD基因簇去阻遏的突变菌株中检测转运活性时,发现LIV-I转运系统的调控正常。在一株缺失整个亮氨酸生物合成操纵子的大肠杆菌B/r菌株中,转运调控正常,这表明该操纵子的基因产物都不是转运调控所必需的。鼠伤寒沙门氏菌LT2菌株leu-500是一个影响leuABCD基因簇启动子样和操纵子样功能的单点突变体,其LIV-I转运系统的调控也正常。所有菌株都具有亮氨酸特异性转运活性,在含有亮氨酸、异亮氨酸和缬氨酸的培养基中生长时,该活性也会受到抑制。对这些在基本培养基中或在过量亮氨酸、异亮氨酸和缬氨酸条件下生长的菌株的浓缩休克液进行了亮氨酸结合活性蛋白检测,发现这些蛋白的水平调控正常。看来,大肠杆菌K-12和B/r菌株以及鼠伤寒沙门氏菌LT2菌株中的支链氨基酸转运系统和生物合成酶并非通过顺式主导型机制共同调控,尽管这两个系统可能有一些共同成分。

相似文献

1
细菌中亮氨酸、异亮氨酸和缬氨酸转运与生物合成的独立调控。
J Bacteriol. 1975 Jun;122(3):994-1000. doi: 10.1128/jb.122.3.994-1000.1975.
2
flrB,一个控制鼠伤寒沙门氏菌中支链氨基酸生物合成的调控位点。
J Bacteriol. 1974 Jun;118(3):942-51. doi: 10.1128/jb.118.3.942-951.1974.
3
亮氨酸-3顺反子在粗糙脉孢菌异亮氨酸和缬氨酸生物合成酶合成调控中的作用。
J Bacteriol. 1974 May;118(2):374-84. doi: 10.1128/jb.118.2.374-384.1974.
4
大肠杆菌中支链氨基酸转运的调控
J Bacteriol. 1976 Sep;127(3):1225-38. doi: 10.1128/jb.127.3.1225-1238.1976.
6
鼠伤寒沙门氏菌中支链氨基酸生物合成的调控:调控突变体的分离
J Bacteriol. 1969 Mar;97(3):1272-82. doi: 10.1128/jb.97.3.1272-1282.1969.
7
鼠伤寒沙门氏菌中支链氨基酸转运系统的抑制与阻遏
J Bacteriol. 1977 Feb;129(2):589-98. doi: 10.1128/jb.129.2.589-598.1977.
9
异亮氨酸、缬氨酸或亮氨酸饥饿对支链氨基酸生物合成酶形成潜力的影响。
J Bacteriol. 1973 Nov;116(2):548-61. doi: 10.1128/jb.116.2.548-561.1973.
10
粘质沙雷氏菌中异亮氨酸-缬氨酸生物合成酶的多价阻遏和基因抑制
J Bacteriol. 1971 Sep;107(3):824-7. doi: 10.1128/jb.107.3.824-827.1971.

引用本文的文献

1
Lrp是一种亮氨酸反应蛋白,可调节大肠杆菌中的支链氨基酸转运基因。
J Bacteriol. 1992 Jan;174(1):108-15. doi: 10.1128/jb.174.1.108-115.1992.
2
亮氨酰 - tRNA合成酶在支链氨基酸转运调节中的作用。
Proc Natl Acad Sci U S A. 1975 Oct;72(10):3921-4. doi: 10.1073/pnas.72.10.3921.
3
大肠杆菌中支链氨基酸转运的调控
J Bacteriol. 1976 Sep;127(3):1225-38. doi: 10.1128/jb.127.3.1225-1238.1976.
4
相关氨基酸之间的拮抗作用导致的生长抑制:缬氨酸对大肠杆菌K-12的影响。
Microbiol Rev. 1979 Mar;43(1):42-58. doi: 10.1128/mr.43.1.42-58.1979.
5
relA基因座在支链氨基酸转运调节中指定一种正效应物。
J Bacteriol. 1979 Feb;137(2):1059-62. doi: 10.1128/jb.137.2.1059-1062.1979.
6
鼠伤寒沙门氏菌连锁图谱,第五版
Microbiol Rev. 1978 Jun;42(2):471-519. doi: 10.1128/mr.42.2.471-519.1978.
7
在tRNA成熟和转录终止受阻的突变体中支链氨基酸转运的调控
J Bacteriol. 1978 May;134(2):683-6. doi: 10.1128/jb.134.2.683-686.1978.
8
亮氨酸对大肠杆菌吡啶核苷酸转氢酶的抑制作用。
J Bacteriol. 1978 May;134(2):394-400. doi: 10.1128/jb.134.2.394-400.1978.
9
大肠杆菌K-12中芳香族氨基酸转运系统的调控
J Bacteriol. 1977 Nov;132(2):453-61. doi: 10.1128/jb.132.2.453-461.1977.
10
鼠伤寒沙门氏菌中L-胱氨酸转运的调控
J Bacteriol. 1977 Jul;131(1):111-8. doi: 10.1128/jb.131.1.111-118.1977.

本文引用的文献

1
需要甲硫氨酸或维生素B12的大肠杆菌突变体。
J Bacteriol. 1950 Jul;60(1):17-28. doi: 10.1128/jb.60.1.17-28.1950.
2
使用福林酚试剂进行蛋白质测定。
J Biol Chem. 1951 Nov;193(1):265-75.
3
亮氨酸的生物合成。III. α-羟基-β-羧基异己酸向α-酮异己酸的转化。
Biochemistry. 1963 Sep-Oct;2:1053-8. doi: 10.1021/bi00905a024.
4
异亮氨酸、缬氨酸和亮氨酸生物合成的调控。I. 多价阻遏
Proc Natl Acad Sci U S A. 1962 Oct 15;48(10):1804-8. doi: 10.1073/pnas.48.10.1804.
6
亮氨酸操纵子的表达。
J Bacteriol. 1966 Apr;91(4):1570-6. doi: 10.1128/jb.91.4.1570-1576.1966.
7
来自大肠杆菌的亮氨酸结合蛋白的纯化及性质
J Biol Chem. 1968 Nov 25;243(22):5921-8.
8
大肠杆菌支链氨基酸氨酰基转移核糖核酸合成酶合成的调控
J Bacteriol. 1971 Oct;108(1):254-62. doi: 10.1128/jb.108.1.254-262.1971.
9
大肠杆菌的异亮氨酸和缬氨酸代谢。十四。硫代异亮氨酸的作用。
J Bacteriol. 1968 May;95(5):1666-71. doi: 10.1128/jb.95.5.1666-1671.1968.
10
生物合成中间体的转运:大肠杆菌中高丝氨酸和苏氨酸摄取的调控
J Bacteriol. 1974 Oct;120(1):114-20. doi: 10.1128/jb.120.1.114-120.1974.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验