Biomolecular Dynamics, Institute of Physics , Albert Ludwigs University , 79104 Freiburg , Germany.
J Phys Chem B. 2018 May 31;122(21):5508-5514. doi: 10.1021/acs.jpcb.7b11800. Epub 2018 Jan 27.
Enhanced sampling techniques represent a versatile approach to account for rare conformational transitions in biomolecules. A particularly promising strategy is to combine massive parallel computing of short molecular dynamics (MD) trajectories (to sample the free energy landscape of the system) with Markov state modeling (to rebuild the kinetics from the sampled data). To obtain well-distributed initial structures for the short trajectories, it is proposed to employ metadynamics MD, which quickly sweeps through the entire free energy landscape of interest. Being only used to generate initial conformations, the implementation of metadynamics can be simple and fast. The conformational dynamics of helical peptide Aib is adopted to discuss various technical issues of the approach, including metadynamics settings, minimal number and length of short MD trajectories, and the validation of the resulting Markov models. Using metadynamics to launch some thousands of nanosecond trajectories, several Markov state models are constructed that reveal that previous unbiased MD simulations of in total 16 μs length cannot provide correct equilibrium populations or qualitative features of the pathway distribution of the short peptide.
增强采样技术是一种灵活的方法,可以用于描述生物分子中罕见的构象转变。一种特别有前途的策略是将大量短分子动力学 (MD) 轨迹的并行计算(以采样系统的自由能景观)与马科夫状态建模(从采样数据中重建动力学)相结合。为了获得短轨迹的分布良好的初始结构,建议使用元动力学 MD,它可以快速遍历整个感兴趣的自由能景观。元动力学仅用于生成初始构象,因此其实现可以简单快速。采用螺旋肽 Aib 的构象动力学来讨论该方法的各种技术问题,包括元动力学设置、短 MD 轨迹的最小数量和长度,以及所得马科夫模型的验证。使用元动力学启动数千纳秒的轨迹,可以构建几个马科夫状态模型,这些模型表明,之前长达 16 μs 的无偏 MD 模拟不能提供正确的平衡态种群或短肽的途径分布的定性特征。