Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709.
Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany.
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3568-3574. doi: 10.1073/pnas.1908830117. Epub 2020 Feb 4.
Homeostasis of cellular fluxes of inorganic phosphate (Pi) supervises its structural roles in bones and teeth, its pervasive regulation of cellular metabolism, and its functionalization of numerous organic compounds. Cellular Pi efflux is heavily reliant on Xenotropic and Polytropic Retrovirus Receptor 1 (XPR1), regulation of which is largely unknown. We demonstrate specificity of XPR1 regulation by a comparatively uncharacterized member of the inositol pyrophosphate (PP-InsP) signaling family: 1,5-bis-diphosphoinositol 2,3,4,6-tetrakisphosphate (InsP). XPR1-mediated Pi efflux was inhibited by reducing cellular InsP synthesis, either genetically (knockout [KO] of diphosphoinositol pentakisphosphate kinases [PPIP5Ks] that synthesize InsP) or pharmacologically [cell treatment with 2.5 µM dietary flavonoid or 10 µM N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl) purine], to inhibit inositol hexakisphosphate kinases upstream of PPIP5Ks. Attenuated Pi efflux from PPIP5K KO cells was quantitatively phenocopied by KO of XPR1 itself. Moreover, Pi efflux from PPIP5K KO cells was rescued by restoration of InsP levels through transfection of wild-type PPIP5K1; transfection of kinase-dead PPIP5K1 was ineffective. Pi efflux was also rescued in a dose-dependent manner by liposomal delivery of a metabolically resistant methylene bisphosphonate (PCP) analog of InsP; PCP analogs of other PP-InsP signaling molecules were ineffective. High-affinity binding of InsP to the XPR1 N-terminus ( = 180 nM) was demonstrated by isothermal titration calorimetry. To derive a cellular biology perspective, we studied biomineralization in the Soas-2 osteosarcoma cell line. KO of PPIP5Ks or XPR1 strongly reduced Pi efflux and accelerated differentiation to the mineralization end point. We propose that catalytically compromising mutations might extend an epistatic repertoire for dysregulation, with pathological consequences for bone maintenance and ectopic calcification.
细胞无机磷酸盐(Pi)流的动态平衡控制其在骨骼和牙齿中的结构作用、广泛调节细胞代谢,并使许多有机化合物实现功能化。细胞 Pi 外排严重依赖于异嗜性和多瘤病毒受体 1(XPR1),但其调节机制在很大程度上尚不清楚。我们通过比较非典型的肌醇六磷酸(PP-InsP)信号家族成员来证明 XPR1 调节的特异性:1,5-双二磷酸肌醇 2,3,4,6-四磷酸(InsP)。通过减少细胞内 InsP 的合成(通过敲除合成 InsP 的二磷酸肌醇五磷酸激酶[PPIP5Ks]的 KO 或用 2.5µM 饮食类黄酮或 10µM N2-(m-三氟苄基),N6-(p-硝基苄基)嘌呤抑制 PPIP5Ks 上游的肌醇六磷酸激酶),XPR1 介导的 Pi 外排受到抑制。PPIP5K KO 细胞的 Pi 外排减少可被 XPR1 本身的 KO 定量模拟。此外,通过转染野生型 PPIP5K1 恢复 InsP 水平可挽救 PPIP5K KO 细胞的 Pi 外排;转染激酶失活的 PPIP5K1 则无效。通过脂质体递送代谢稳定的亚甲基双膦酸盐(PCP)InsP 类似物,也可在剂量依赖性方式下挽救 Pi 外排;其他 PP-InsP 信号分子的 PCP 类似物则无效。通过等温滴定量热法证实 InsP 与 XPR1 N 端的高亲和力结合(=180 nM)。为了获得细胞生物学的视角,我们研究了 Soas-2 骨肉瘤细胞系中的生物矿化。PPIP5Ks 或 XPR1 的 KO 强烈降低 Pi 外排并加速分化至矿化终点。我们提出,催化缺陷突变可能会扩展遗传不稳定性的范围,对骨骼维持和异位钙化产生病理后果。