Suppr超能文献

包覆有过渡金属合金@石墨烯核壳纳米颗粒的海胆状非晶态氮掺杂碳纳米管用于微波能量衰减

Urchin-like Amorphous Nitrogen-Doped Carbon Nanotubes Encapsulated with Transition-Metal-Alloy@Graphene Core@Shell Nanoparticles for Microwave Energy Attenuation.

作者信息

Guo Dong, Yuan Haoran, Wang Xianchao, Zhu Chunling, Chen Yujin

机构信息

Key Laboratory of In-Fiber Integrated Optics, Ministry of Education and College of Science , Harbin Engineering University , Harbin 150001 , China.

College of Chemistry and Chemical Engineering , Harbin Engineering University , Harbin 150001 , China.

出版信息

ACS Appl Mater Interfaces. 2020 Feb 26;12(8):9628-9636. doi: 10.1021/acsami.9b20412. Epub 2020 Feb 17.

Abstract

Herein, we report three-dimensional (3D) urchin-like amorphous nitrogen-doped CNT (NCNT) arrays with embedded cobalt-nickel@graphene core@shell nanoparticles (NPs) in the inner parts of NCNTs (CoNi@G@NCNTs) for highly efficient absorption toward microwave (MW). The CoNi NPs are covered with about seven layers of graphene shell, resulting in the formation of CoNi@G core-shell structures. In the meanwhile, the CoNi@G core-shell NPs are further encapsulated within NCNTs. Benefitting from the multiple scattering of the unique 3D structure toward MW, cooperative effect between magnetic loss and dielectric loss, and additional interfacial polarizations, the 3D urchin-like CoNi@G@NCNTs exhibit excellent MW energy attenuation ability with a broad absorption bandwidth of 5.2 GHz with a matching thickness of merely 1.7 mm, outperforming most reported absorbers. Furthermore, the chemical stability of the 3D urchin-like CoNi@G@NCNTs is improved greatly due to the presence of the graphene coating layers and outmost NCNTs, facilitating their practical applications. Our results highlight a novel strategy for fabrication of 3D nanostructures as high-performance MW-absorbing materials.

摘要

在此,我们报道了一种三维(3D)海胆状非晶态氮掺杂碳纳米管(NCNT)阵列,其内部嵌入了钴镍@石墨烯核壳纳米颗粒(NPs)(CoNi@G@NCNTs),用于高效吸收微波(MW)。钴镍纳米颗粒被大约七层石墨烯壳覆盖,从而形成了CoNi@G核壳结构。同时,CoNi@G核壳纳米颗粒进一步被包裹在NCNT内。得益于独特的3D结构对微波的多重散射以及磁损耗和介电损耗之间的协同效应,还有额外的界面极化,这种3D海胆状CoNi@G@NCNTs表现出优异的微波能量衰减能力,具有5.2 GHz的宽吸收带宽,匹配厚度仅为1.7 mm,优于大多数已报道的吸收体。此外,由于存在石墨烯涂层和最外层的NCNT,3D海胆状CoNi@G@NCNTs的化学稳定性大大提高,有利于其实际应用。我们的结果突出了一种制造3D纳米结构作为高性能微波吸收材料的新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验