Suppr超能文献

基于Ti C T/MoS自卷曲棒的泡沫增强了用于电磁波吸收的界面极化。

Ti C T /MoS Self-Rolling Rod-Based Foam Boosts Interfacial Polarization for Electromagnetic Wave Absorption.

作者信息

Li Minghang, Zhu Wenjie, Li Xin, Xu Hailong, Fan Xiaomeng, Wu Hongjing, Ye Fang, Xue Jimei, Li Xiaoqiang, Cheng Laifei, Zhang Litong

机构信息

Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, P. R. China.

出版信息

Adv Sci (Weinh). 2022 May;9(16):e2201118. doi: 10.1002/advs.202201118. Epub 2022 Apr 11.

Abstract

Heterogeneous interface design to boost interfacial polarization has become a feasible way to realize high electromagnetic wave absorbing (EMA) performance of dielectric materials. However, interfacial polarization in simple structures such as particles, rods, and flakes is weak and usually plays a secondary role. In order to enhance the interfacial polarization and simultaneously reduce the electronic conductivity to avoid reflection of electromagnetic wave, a more rational geometric structure for dielectric materials is desired. Herein, a Ti C T /MoS self-rolling rod-based foam is proposed to realize excellent interfacial polarization and achieve high EMA performance at ultralow density. Different surface tensions of Ti C T and ammonium tetrathiomolybdate are utilized to induce the self-rolling of Ti C T sheets. The rods with a high aspect ratio not only remarkably improve the polarization loss but also are beneficial to the construction of Ti C T /MoS foam, leading to enhanced EMA capability. As a result, the effective absorption bandwidth of Ti C T /MoS foam covers the whole X band (8.2-12.4 GHz) with a density of only 0.009 g cm , at a thickness of 3.3 mm. The advantages of rod structures are verified through simulations in the CST microwave studio. This work inspires the rational geometric design of micro/nanostructures for new-generation EMA materials.

摘要

通过异质界面设计来增强界面极化已成为实现介电材料高电磁波吸收(EMA)性能的一种可行方法。然而,在诸如颗粒、棒材和薄片等简单结构中的界面极化较弱,通常起次要作用。为了增强界面极化并同时降低电子电导率以避免电磁波反射,需要一种更合理的介电材料几何结构。在此,提出了一种基于Ti C T /MoS自卷棒的泡沫材料,以实现优异的界面极化并在超低密度下实现高EMA性能。利用Ti C T和四硫代钼酸铵不同的表面张力来诱导Ti C T片材的自卷。高长径比的棒材不仅显著提高了极化损耗,而且有利于Ti C T /MoS泡沫的构建,从而增强了EMA能力。结果,Ti C T /MoS泡沫的有效吸收带宽覆盖了整个X波段(8.2 - 12.4 GHz),密度仅为0.009 g/cm³,厚度为3.3 mm。通过在CST微波工作室中的模拟验证了棒状结构的优势。这项工作为新一代EMA材料的微/纳米结构的合理几何设计提供了启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c8b/9165497/76bbcb12759c/ADVS-9-2201118-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验