文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

无螯合纳米平台用于诊断和治疗同位素的掺入。

A Chelate-Free Nano-Platform for Incorporation of Diagnostic and Therapeutic Isotopes.

机构信息

The University of Sydney, Faculty of Science, School of Physics, Sydney, NSW, Australia.

Bill Walsh Translational Cancer Research Laboratory, The Kolling Institute, Northern Sydney Local Health District, Sydney, Australia.

出版信息

Int J Nanomedicine. 2020 Jan 7;15:31-47. doi: 10.2147/IJN.S227931. eCollection 2020.


DOI:10.2147/IJN.S227931
PMID:32021163
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6954846/
Abstract

PURPOSE: Using our chelate-free, heat-induced radiolabeling (HIR) method, we show that a wide range of metals, including those with radioactive isotopologues used for diagnostic imaging and radionuclide therapy, bind to the Feraheme (FH) nanoparticle (NP), a drug approved for the treatment of iron anemia. MATERIAL AND METHODS: FH NPs were heated (120°C) with nonradioactive metals, the resulting metal-FH NPs were characterized by inductively coupled plasma mass spectrometry (ICP-MS), dynamic light scattering (DLS), and r and r relaxivities obtained by nuclear magnetic relaxation spectrometry (NMRS). In addition, the HIR method was performed with [Y]Y, [Lu]Lu, and [Cu]Cu, the latter with an HIR technique optimized for this isotope. Optimization included modifying reaction time, temperature, and vortex technique. Radiochemical yield (RCY) and purity (RCP) were measured using size exclusion chromatography (SEC) and thin-layer chromatography (TLC). RESULTS: With ICP-MS, metals incorporated into FH at high efficiency were bismuth, indium, yttrium, lutetium, samarium, terbium and europium (>75% @ 120 C). Incorporation occurred with a small (less than 20%) but statistically significant increases in size and the r relaxivity. An improved HIR technique (faster heating rate and improved vortexing) was developed specifically for copper and used with the HIR technique and [Cu]Cu. Using SEC and TLC analyses with [Y]Y, [Lu]Lu and [Cu]Cu, RCYs were greater than 85% and RCPs were greater than 95% in all cases. CONCLUSION: The chelate-free HIR technique for binding metals to FH NPs has been extended to a range of metals with radioisotopes used in therapeutic and diagnostic applications. Cations with f-orbital electrons, more empty d-orbitals, larger radii, and higher positive charges achieved higher values of RCY and RCP in the HIR reaction. The ability to use a simple heating step to bind a wide range of metals to the FH NP, a widely available approved drug, may allow this NP to become a platform for obtaining radiolabeled nanoparticles in many settings.

摘要

目的:利用我们的无螯合物、热诱导放射性标记(HIR)方法,我们表明,包括用于诊断成像和放射性核素治疗的放射性同位素的各种金属,都与 Feraheme(FH)纳米颗粒(NP)结合,FH NP 是一种批准用于治疗铁贫血的药物。

材料和方法:将 FH NPs 加热(120°C)与非放射性金属一起,通过电感耦合等离子体质谱(ICP-MS)、动态光散射(DLS)和通过磁共振弛豫谱(NMRS)获得的 r 和 r 弛豫率来表征所得的金属-FH NPs。此外,还使用 [Y]Y、[Lu]Lu 和 [Cu]Cu 进行了 HIR 方法,后一种方法使用针对该同位素优化的 HIR 技术。优化包括修改反应时间、温度和涡旋技术。使用尺寸排阻色谱(SEC)和薄层层析(TLC)测量放射性化学收率(RCY)和纯度(RCP)。

结果:使用 ICP-MS,以高效率将铋、铟、钇、镥、钐、铽和铕掺入 FH 中(>75%@120°C)。掺入发生在尺寸略有增加(小于 20%)但具有统计学意义的情况下,并且 r 弛豫率也略有增加。专门为铜开发了一种改进的 HIR 技术(更快的加热速率和改进的涡旋),并与 HIR 技术和 [Cu]Cu 一起使用。使用 SEC 和 TLC 分析与 [Y]Y、[Lu]Lu 和 [Cu]Cu,在所有情况下,RCY 均大于 85%,RCP 均大于 95%。

结论:用于将金属结合到 FH NPs 的无螯合物 HIR 技术已扩展到用于治疗和诊断应用的一系列具有放射性同位素的金属。具有 f 轨道电子、更多空 d 轨道、更大半径和更高正电荷的阳离子在 HIR 反应中实现了更高的 RCY 和 RCP 值。使用简单的加热步骤将广泛可用的批准药物 FH NP 与各种金属结合的能力,可能使该 NP 成为在许多情况下获得放射性标记纳米颗粒的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1457/6954846/5780271f4e1c/IJN-15-31-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1457/6954846/69d7972b762e/IJN-15-31-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1457/6954846/06ae8e311cca/IJN-15-31-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1457/6954846/d3d11f67dcaa/IJN-15-31-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1457/6954846/5780271f4e1c/IJN-15-31-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1457/6954846/69d7972b762e/IJN-15-31-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1457/6954846/06ae8e311cca/IJN-15-31-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1457/6954846/d3d11f67dcaa/IJN-15-31-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1457/6954846/5780271f4e1c/IJN-15-31-g0004.jpg

相似文献

[1]
A Chelate-Free Nano-Platform for Incorporation of Diagnostic and Therapeutic Isotopes.

Int J Nanomedicine. 2020-1-7

[2]
A Radio-Nano-Platform for T1/T2 Dual-Mode PET-MR Imaging.

Int J Nanomedicine. 2020-2-24

[3]
Heat-induced radiolabeling and fluorescence labeling of Feraheme nanoparticles for PET/SPECT imaging and flow cytometry.

Nat Protoc. 2018-1-25

[4]
Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles.

Chem Sci. 2015-1-1

[5]
Pyridine-containing octadentate ligand NE3TA-PY for formation of neutral complex with Lu(III) and Y(III) for radiopharmaceutical applications: Synthesis, DFT calculation, radiolabeling, and in vitro complex stability.

J Inorg Biochem. 2021-8

[6]
Tc-, Y-, and Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis.

ACS Appl Mater Interfaces. 2019-10-25

[7]
Automated module radiolabeling of peptides and antibodies with gallium-68, lutetium-177 and iodine-131.

Cancer Biother Radiopharm. 2011-12-7

[8]
Heat-induced-radiolabeling and click chemistry: A powerful combination for generating multifunctional nanomaterials.

PLoS One. 2017-2-22

[9]
Influence of cations on the complexation yield of DOTATATE with yttrium and lutetium: a perspective study for enhancing the 90Y and 177Lu labeling conditions.

Nucl Med Biol. 2011-12-14

[10]
H(2)azapa: a versatile acyclic multifunctional chelator for (67)Ga, (64)Cu, (111)In, and (177)Lu.

Inorg Chem. 2012-11-19

引用本文的文献

[1]
Cation Exchange Protocol to Radiolabel Rare-Earth Nanoparticles with Yttrium-90 for Radiotherapy and for Magnetic Resonance Imaging.

ACS Appl Mater Interfaces. 2025-6-18

[2]
Approaches to Nanoparticle Labeling: A Review of Fluorescent, Radiological, and Metallic Techniques.

Environ Health (Wash). 2023-6-21

[3]
Methods for Radiolabeling Nanoparticles (Part 3): Therapeutic Use.

Biomolecules. 2023-8-12

[4]
Chelator-Free/Chelator-Mediated Radiolabeling of Colloidally Stabilized Iron Oxide Nanoparticles for Biomedical Imaging.

Nanomaterials (Basel). 2021-6-25

[5]
Positron annihilation localization by nanoscale magnetization.

Sci Rep. 2020-11-20

[6]
A Radio-Nano-Platform for T1/T2 Dual-Mode PET-MR Imaging.

Int J Nanomedicine. 2020-2-24

本文引用的文献

[1]
Microwave-assisted preparation of paramagnetic zwitterionic amphiphilic copolymer hybrid molybdenum disulfide for T-weighted magnetic resonance imaging-guided photothermal therapy.

J Mater Chem B. 2018-10-28

[2]
Radio-enhancement effects by radiolabeled nanoparticles.

Sci Rep. 2019-10-4

[3]
Surface radio-mineralisation mediates chelate-free radiolabelling of iron oxide nanoparticles.

Chem Sci. 2019-1-9

[4]
Cu-Fe-Se Ternary Nanosheet-Based Drug Delivery Carrier for Multimodal Imaging and Combined Chemo/Photothermal Therapy of Cancer.

ACS Appl Mater Interfaces. 2018-12-4

[5]
An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions.

J Biomed Mater Res A. 2018-10-25

[6]
Comparison of radiobiological parameters for Y radionuclide therapy (RNT) and external beam radiotherapy (EBRT) in vitro.

EJNMMI Phys. 2018-9-3

[7]
Simultaneous Preclinical Positron Emission Tomography-Magnetic Resonance Imaging Study of Lymphatic Drainage of Chelator-Free Cu-Labeled Nanoparticles.

Cancer Biother Radiopharm. 2018-7-23

[8]
Intrinsically Zirconium-89-Labeled Manganese Oxide Nanoparticles for Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging.

J Biomed Nanotechnol. 2018-5-1

[9]
Heat-induced radiolabeling and fluorescence labeling of Feraheme nanoparticles for PET/SPECT imaging and flow cytometry.

Nat Protoc. 2018-1-25

[10]
Chelator-Free Labeling of Metal Oxide Nanostructures with Zirconium-89 for Positron Emission Tomography Imaging.

ACS Nano. 2017-11-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索