文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于生物医学成像的胶体稳定氧化铁纳米颗粒的无螯合剂/螯合剂介导的放射性标记

Chelator-Free/Chelator-Mediated Radiolabeling of Colloidally Stabilized Iron Oxide Nanoparticles for Biomedical Imaging.

作者信息

Papadopoulou Sofia, Kolokithas-Ntoukas Argiris, Salvanou Evangelia-Alexandra, Gaitanis Anastasios, Xanthopoulos Stavros, Avgoustakis Konstantinos, Gazouli Maria, Paravatou-Petsotas Maria, Tsoukalas Charalampos, Bakandritsos Aristides, Bouziotis Penelope

机构信息

Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15341 Athens, Greece.

Radioanalytics-Environmental Radioactivity, Radiochemistry & Radiobiology Research Laboratories SMPC, 20131 Corinth, Greece.

出版信息

Nanomaterials (Basel). 2021 Jun 25;11(7):1677. doi: 10.3390/nano11071677.


DOI:10.3390/nano11071677
PMID:34202370
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8307582/
Abstract

The aim of this study was to develop a bioimaging probe based on magnetic iron oxide nanoparticles (MIONs) surface functionalized with the copolymer (p(MAA-g-EGMA)), which were radiolabeled with the positron emitter Gallium-68. The synthesis of the hybrid MIONs was realized by hydrolytic condensation of a single ferrous precursor in the presence of the copolymer. The synthesized MagP MIONs displayed an average D of 87 nm, suitable for passive targeting of cancerous tissues through the enhanced permeation and retention (EPR) effect after intravenous administration, while their particularly high magnetic content ascribes strong magnetic properties to the colloids. Two different approaches were explored to develop MIONs radiolabeled with Ga: the chelator-mediated approach, where the chelating agent NODAGA-NHS was conjugated onto the MIONs (MagP-NODAGA) to form a chelate complex with Ga, and the chelator-free approach, where Ga was directly incorporated onto the MIONs (MagP). Both groups of NPs showed highly efficient radiolabeling with Ga, forming constructs which were stable with time, and in the presence of PBS and human serum. Ex vivo biodistribution studies of [Ga]Ga- MIONs showed high accumulation in the mononuclear phagocyte system (MPS) organs and satisfactory blood retention with time. In vivo PET imaging with [Ga]Ga-MagP MIONs was in accordance with the ex vivo biodistribution results. Finally, the MIONs showed low toxicity against 4T1 breast cancer cells. These detailed studies established that [Ga]Ga- MIONs exhibit potential for application as tracers for early cancer detection.

摘要

本研究的目的是开发一种基于用共聚物(p(MAA-g-EGMA))表面功能化的磁性氧化铁纳米颗粒(MIONs)的生物成像探针,这些纳米颗粒用正电子发射体镓-68进行放射性标记。通过在共聚物存在下单一亚铁前体的水解缩合来实现杂化MIONs的合成。合成的MagP MIONs的平均直径为87 nm,适合通过静脉注射后增强的渗透和滞留(EPR)效应被动靶向癌组织,而其特别高的磁性含量赋予胶体很强的磁性。探索了两种不同的方法来开发用Ga放射性标记的MIONs:螯合剂介导法,其中螯合剂NODAGA-NHS与MIONs(MagP-NODAGA)共轭以形成与Ga的螯合物;以及无螯合剂法,其中Ga直接掺入MIONs(MagP)。两组纳米颗粒均显示出与Ga的高效放射性标记,形成随时间以及在PBS和人血清存在下稳定的构建体。[Ga]Ga-MIONs的离体生物分布研究表明在单核吞噬细胞系统(MPS)器官中有高积累,并且随时间有令人满意的血液滞留。用[Ga]Ga-MagP MIONs进行的体内PET成像与离体生物分布结果一致。最后,MIONs对4T1乳腺癌细胞显示出低毒性。这些详细研究表明[Ga]Ga-MIONs具有作为早期癌症检测示踪剂应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/97b94d03b399/nanomaterials-11-01677-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/246ff325797f/nanomaterials-11-01677-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/fe02328657b3/nanomaterials-11-01677-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/e79ebcca57ad/nanomaterials-11-01677-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/ff07a1c881bf/nanomaterials-11-01677-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/a4e965c01d52/nanomaterials-11-01677-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/4667fa73f3f2/nanomaterials-11-01677-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/d41a97e5d695/nanomaterials-11-01677-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/e680f1b2586b/nanomaterials-11-01677-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/5c0ebe67b4d1/nanomaterials-11-01677-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/cdcc3a42f020/nanomaterials-11-01677-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/c44102b50921/nanomaterials-11-01677-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/9690ea0a0bd6/nanomaterials-11-01677-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/97b94d03b399/nanomaterials-11-01677-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/246ff325797f/nanomaterials-11-01677-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/fe02328657b3/nanomaterials-11-01677-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/e79ebcca57ad/nanomaterials-11-01677-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/ff07a1c881bf/nanomaterials-11-01677-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/a4e965c01d52/nanomaterials-11-01677-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/4667fa73f3f2/nanomaterials-11-01677-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/d41a97e5d695/nanomaterials-11-01677-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/e680f1b2586b/nanomaterials-11-01677-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/5c0ebe67b4d1/nanomaterials-11-01677-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/cdcc3a42f020/nanomaterials-11-01677-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/c44102b50921/nanomaterials-11-01677-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/9690ea0a0bd6/nanomaterials-11-01677-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8253/8307582/97b94d03b399/nanomaterials-11-01677-sch001.jpg

相似文献

[1]
Chelator-Free/Chelator-Mediated Radiolabeling of Colloidally Stabilized Iron Oxide Nanoparticles for Biomedical Imaging.

Nanomaterials (Basel). 2021-6-25

[2]
Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with Ga and Lu as Potential Theranostic Agents.

Nanomaterials (Basel). 2022-7-20

[3]
Highly water-soluble magnetic iron oxide (FeO) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates.

J Mater Chem B. 2013-6-14

[4]
Improved positron emission tomography imaging of glioblastoma cancer using novel Ga-labeled peptides targeting the urokinase-type plasminogen activator receptor (uPAR).

Amino Acids. 2017-6

[5]
Gallium-68 Labeled Iron Oxide Nanoparticles Coated with 2,3-Dicarboxypropane-1,1-diphosphonic Acid as a Potential PET/MR Imaging Agent: A Proof-of-Concept Study.

Contrast Media Mol Imaging. 2017-12-28

[6]
Ga-radiolabeled AGuIX nanoparticles as dual-modality imaging agents for PET/MRI-guided radiation therapy.

Nanomedicine (Lond). 2017-7

[7]
Iron Oxide Nanoparticle Based Contrast Agents for Magnetic Resonance Imaging.

Mol Pharm. 2017-5-1

[8]
Exceedingly Small Magnetic Iron Oxide Nanoparticles for T -Weighted Magnetic Resonance Imaging and Imaging-Guided Therapy of Tumors.

Small. 2023-12

[9]
Ga tagged dendrimers for molecular tumor imaging in animals.

Hell J Nucl Med. 2019

[10]
Preparation of Magnetic Iron Oxide Nanoparticles (MIONs) with Improved Saturation Magnetization Using Multifunctional Polymer Ligand.

Polymers (Basel). 2016-11-8

引用本文的文献

[1]
One-pot hydrothermal synthesize and characterization of Au/Gd bimetallic nanostructure as potential contrast agents in CT and MR imaging.

Bioimpacts. 2024-8-3

[2]
Cancer Brachytherapy at the Nanoscale: An Emerging Paradigm.

Chem Biomed Imaging. 2023-11-21

[3]
Unveiling the Yin-Yang Balance of M1 and M2 Macrophages in Hepatocellular Carcinoma: Role of Exosomes in Tumor Microenvironment and Immune Modulation.

Cells. 2023-8-10

[4]
Radiolabeled Iron Oxide Nanoparticles as Dual Modality Contrast Agents in SPECT/MRI and PET/MRI.

Nanomaterials (Basel). 2023-1-27

[5]
Methods for Radiolabelling Nanoparticles: PET Use (Part 2).

Biomolecules. 2022-10-20

[6]
Tc-Labeled Iron Oxide Nanoparticles as Dual-Modality Contrast Agent: A Preliminary Study from Synthesis to Magnetic Resonance and Gamma-Camera Imaging in Mice Models.

Nanomaterials (Basel). 2022-8-8

[7]
Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with Ga and Lu as Potential Theranostic Agents.

Nanomaterials (Basel). 2022-7-20

[8]
Radiolabeling of Nanomaterials: Advantages and Challenges.

Front Toxicol. 2021-12-13

[9]
Synthesis and In Vitro Evaluation of Gold Nanoparticles Functionalized with Thiol Ligands for Robust Radiolabeling with Tc.

Nanomaterials (Basel). 2021-9-15

本文引用的文献

[1]
Magnetic Nanoparticles-A Multifunctional Potential Agent for Diagnosis and Therapy.

Cancers (Basel). 2021-5-5

[2]
Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting.

Cancers (Basel). 2021-2-7

[3]
A roadmap for the early detection and diagnosis of cancer.

Lancet Oncol. 2020-11

[4]
Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics.

Theranostics. 2020

[5]
Trastuzumab Conjugated Superparamagnetic Iron Oxide Nanoparticles Labeled with Ac as a Perspective Tool for Combined α-Radioimmunotherapy and Magnetic Hyperthermia of HER2-Positive Breast Cancer.

Molecules. 2020-2-25

[6]
A Proof-of-Concept Study on the Therapeutic Potential of Au Nanoparticles Radiolabeled with the Alpha-Emitter Actinium-225.

Pharmaceutics. 2020-2-21

[7]
Therapeutic Efficiency of Multiple Applications of Magnetic Hyperthermia Technique in Glioblastoma Using Aminosilane Coated Iron Oxide Nanoparticles: In Vitro and In Vivo Study.

Int J Mol Sci. 2020-1-31

[8]
A Chelate-Free Nano-Platform for Incorporation of Diagnostic and Therapeutic Isotopes.

Int J Nanomedicine. 2020-1-7

[9]
Development of Ga-68 labeled, biotinylated thiosemicarbazone dextran-coated iron oxide nanoparticles as multimodal PET/MRI probe.

Int J Biol Macromol. 2020-1-23

[10]
Tc-, Y-, and Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis.

ACS Appl Mater Interfaces. 2019-10-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索