School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, U.S.A.
Department of Geophysical Sciences and Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois, U.S.A.
J Microsc. 2020 Feb;277(2):100-106. doi: 10.1111/jmi.12872. Epub 2020 Feb 13.
A fast pink-beam X-ray microtomography methodology was developed at the GSECARS 13-BMD beamline at the Advanced Photon Source to study multiphase flow in porous media. The white beam X-ray distribution of the Advanced Photon Source is modified using a 1-mm copper filter and the beam is reflected off a platinum mirror angled at 1.5 mrad, resulting in a pink beam with X-ray intensities predominately in the range of 40-60 keV. Bubble formation in the wetting phase and wettability alteration of the solid phase from x-ray exposure can be a problem with high flux and high energy beams, but the suggested pink-beam configuration mitigates these effects. With a 14-second acquisition time for capturing a complete dataset, the evolving fluid-fronts of nonequilibrium three-dimensional multiphase flow can be studied in real-time and the images contain adequate image contrast and quality to measure important multiphase quantities such as contact angles and interfacial areas. LAY DESCRIPTION: Understanding how fluids are transported through porous materials is pertinent to many important societal processes in the environment (e.g. groundwater flow for drinking water) and industry (e.g. drying of industrial materials such as pulp and paper). To develop accurate models and theories of this fluid transportation, experiments need to track fluids in 3-dimensions quickly. This is difficult to do as most materials are opaque and therefore cameras cannot capture fluid movement directly. But, with the help of x-rays, scientists can track fluids in 3D using an imaging technique called x-ray microtomography (μCT). Standard μCT takes about 15 minutes for one image which can produce blurry images if fluids are flowing quickly through the material. We present a technique, fast μCT, which uses a larger spectrum of x-rays than the standard technique and acquires a 3D image in 14 seconds. With the large amount of x-rays utilized in this technique, bubbles can start to form in the fluids from x-ray exposure. We optimized the utilized x-ray spectrum to limit bubble formation while still achieving a rapid 3D image acquisition that has adequate image quality and contrast. With this technique, scientists can study fluid transport in 3D porous materials in near real-time for the improvement of models used to ensure public and environmental health.
一种快速的粉红束 X 射线显微断层扫描方法在先进光源 13-BMD 光束线上开发,用于研究多相流在多孔介质中的流动。先进光源的白束 X 射线分布通过使用 1 毫米厚的铜过滤器进行修改,然后将光束从以 1.5 毫弧度角倾斜的铂反射镜反射,从而产生具有主要在 40-60keV 范围内的 X 射线强度的粉红束。在高通量和高能束的情况下,气泡的形成和固体相的润湿性改变会成为问题,但是建议的粉红束配置减轻了这些影响。通过 14 秒的采集时间来获取完整的数据集,可以实时研究非平衡三维多相流的演化流体前缘,并且图像具有足够的图像对比度和质量来测量重要的多相量,例如接触角和界面面积。非技术描述:了解流体如何通过多孔材料传输与环境(例如饮用水地下水流动)和工业(例如纸浆和造纸等工业材料的干燥)中的许多重要社会过程有关。为了开发这种流体输送的准确模型和理论,需要快速在 3 维中跟踪流体。由于大多数材料是不透明的,因此相机无法直接捕获流体运动,因此这很难做到。但是,借助 X 射线,科学家可以使用称为 X 射线显微断层扫描(μCT)的成像技术在 3D 中跟踪流体。标准的 μCT 大约需要 15 分钟才能拍摄一张图像,如果流体快速流过材料,则可能会产生模糊的图像。我们提出了一种技术,快速 μCT,它使用比标准技术更大的 X 射线光谱,并在 14 秒内获取 3D 图像。在这项技术中,大量使用 X 射线会导致液体中的气泡开始形成。我们优化了所使用的 X 射线光谱,以限制气泡形成,同时仍实现快速的 3D 图像采集,该图像具有足够的图像质量和对比度。有了这项技术,科学家们可以近乎实时地研究 3D 多孔材料中的流体传输,从而改进用于确保公共和环境健康的模型。