Suppr超能文献

基底神经节强化学习在词汇歧义消解中的作用。

The Role of Basal Ganglia Reinforcement Learning in Lexical Ambiguity Resolution.

机构信息

Department of Psychology and Institute for Learning & Brain Sciences, University of Washington.

Google, Inc.

出版信息

Top Cogn Sci. 2020 Jan;12(1):402-416. doi: 10.1111/tops.12488.

Abstract

The current study aimed to elucidate the contributions of the subcortical basal ganglia to human language by adopting the view that these structures engage in a basic neurocomputation that may account for its involvement across a wide range of linguistic phenomena. Specifically, we tested the hypothesis that basal ganglia reinforcement learning (RL) mechanisms may account for variability in semantic selection processes necessary for ambiguity resolution. To test this, we used a biased homograph lexical ambiguity priming task that allowed us to measure automatic processes for resolving ambiguity toward high-frequency word meanings. Individual differences in task performance were then related to indices of basal ganglia RL, which were used to group subjects into three learning styles: (a) Choosers who learn by seeking high reward probability stimuli; (b) Avoiders, who learn by avoiding low reward probability stimuli; and (c) Balanced participants, whose learning reflects equal contributions of choose and avoid processes. The results suggest that balanced individuals had significantly lower access to subordinate, or low-frequency, homograph word meanings. Choosers and Avoiders, on the other hand, had higher access to the subordinate word meaning even after a long delay between prime and target. Experimental findings were then tested using an ACT-R computational model of RL that learns from both positive and negative feedback. Results from the computational model simulations confirm and extend the pattern of behavioral findings, providing an RL account of individual differences in lexical ambiguity resolution.

摘要

本研究旨在通过采用基底神经节(subcortical basal ganglia)参与基本神经计算的观点,阐明基底神经节(subcortical basal ganglia)对人类语言的贡献,这种基本神经计算可能解释了其在广泛的语言现象中的参与。具体来说,我们检验了基底神经节强化学习(Reinforcement Learning,RL)机制是否可以解释解决歧义所需的语义选择过程中的变异性。为了检验这一点,我们使用了有偏差的同形异义词(homograph)词汇歧义启动任务,该任务使我们能够测量解决歧义的自动过程,以达到高频词义。然后,将任务表现的个体差异与基底神经节 RL 的指标相关联,这些指标用于将受试者分为三种学习风格:(a)选择者,通过寻求高奖励概率的刺激来学习;(b)回避者,通过避免低奖励概率的刺激来学习;(c)平衡参与者,其学习反映了选择和回避过程的均等贡献。结果表明,平衡个体对次要或低频同形异义词词义的获取明显较低。而选择者和回避者,即使在启动和目标之间有很长的延迟,也能更容易地获取次要的词义。然后,使用基于积极和消极反馈进行学习的 RL 的 ACT-R 计算模型来检验实验结果。计算模型模拟的结果证实并扩展了行为发现的模式,为词汇歧义解决中的个体差异提供了 RL 的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验