Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
Cité de la musique, Philharmonie de Paris, Paris, France.
J Neurophysiol. 2020 Mar 1;123(3):1063-1071. doi: 10.1152/jn.00758.2018. Epub 2020 Feb 5.
During auditory perception, neural oscillations are known to entrain to acoustic dynamics but their role in the processing of auditory information remains unclear. As a complex temporal structure that can be parameterized acoustically, music is particularly suited to address this issue. In a combined behavioral and EEG experiment in human participants, we investigated the relative contribution of temporal (acoustic dynamics) and nontemporal (melodic spectral complexity) dimensions of stimulation on neural entrainment, a stimulus-brain coupling phenomenon operationally defined here as the temporal coherence between acoustical and neural dynamics. We first highlight that low-frequency neural oscillations robustly entrain to complex acoustic temporal modulations, which underscores the fine-grained nature of this coupling mechanism. We also reveal that enhancing melodic spectral complexity, in terms of pitch, harmony, and pitch variation, increases neural entrainment. Importantly, this manipulation enhances activity in the theta (5 Hz) range, a frequency-selective effect independent of the note rate of the melodies, which may reflect internal temporal constraints of the neural processes involved. Moreover, while both emotional arousal ratings and neural entrainment were positively modulated by spectral complexity, no direct relationship between arousal and neural entrainment was observed. Overall, these results indicate that neural entrainment to music is sensitive to the spectral content of auditory information and indexes an auditory level of processing that should be distinguished from higher-order emotional processing stages. Low-frequency (<10 Hz) cortical neural oscillations are known to entrain to acoustic dynamics, the so-called neural entrainment phenomenon, but their functional implication in the processing of auditory information remains unclear. In a behavioral and EEG experiment capitalizing on parameterized musical textures, we disentangle the contribution of stimulus dynamics, melodic spectral complexity, and emotional judgments on neural entrainment and highlight their respective spatial and spectral neural signature.
在听觉感知过程中,神经振荡被认为与声学动态同步,但它们在听觉信息处理中的作用尚不清楚。音乐作为一种可以在声学上参数化的复杂时间结构,特别适合解决这个问题。在一项人类参与者的行为和 EEG 联合实验中,我们研究了刺激的时间(声学动态)和非时间(旋律频谱复杂度)维度对神经同步的相对贡献,这里将神经同步定义为声学和神经动力学之间的时间相干性的一种刺激-大脑耦合现象。我们首先强调,低频神经振荡与复杂的声学时间调制强烈同步,这突显了这种耦合机制的细粒度性质。我们还揭示了增强旋律频谱复杂度(在音高、和声和音高变化方面)会增加神经同步。重要的是,这种操作会增加θ(5 Hz)频段的活动,这是一种与旋律音符率无关的频率选择性效应,可能反映了所涉及的神经过程的内部时间约束。此外,虽然情感唤醒评分和神经同步都受到频谱复杂度的正向调节,但没有观察到唤醒和神经同步之间的直接关系。总的来说,这些结果表明,音乐的神经同步对听觉信息的频谱内容敏感,并反映了一个应该与更高阶的情感处理阶段区分开来的听觉处理水平。众所周知,低频(<10 Hz)皮质神经振荡与声学动态同步,即所谓的神经同步现象,但它们在听觉信息处理中的功能意义尚不清楚。在一项利用参数化音乐纹理的行为和 EEG 实验中,我们分离了刺激动态、旋律频谱复杂度和情感判断对神经同步的贡献,并强调了它们各自的空间和频谱神经特征。