Suppr超能文献

用户控制的管道用于功能集成和头颈部放射治疗结果预测。

User-controlled pipelines for feature integration and head and neck radiation therapy outcome predictions.

机构信息

Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; The Techna Institute for the Advancement of Technology for Health, Toronto, Ontario, Canada.

Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; The Techna Institute for the Advancement of Technology for Health, Toronto, Ontario, Canada; Vector Institute, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada; The Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada.

出版信息

Phys Med. 2020 Feb;70:145-152. doi: 10.1016/j.ejmp.2020.01.027. Epub 2020 Feb 2.

Abstract

PURPOSE

Precision cancer medicine is dependent on accurate prediction of disease and treatment outcome, requiring integration of clinical, imaging and interventional knowledge. User controlled pipelines are capable of feature integration with varied levels of human interaction. In this work we present two pipelines designed to combine clinical, radiomic (quantified imaging), and RTx-omic (quantified radiation therapy (RT) plan) information for prediction of locoregional failure (LRF) in head and neck cancer (H&N).

METHODS

Pipelines were designed to extract information and model patient outcomes based on clinical features, computed tomography (CT) imaging, and planned RT dose volumes. We predict H&N LRF using: 1) a highly user-driven pipeline that leverages modular design and machine learning for feature extraction and model development; and 2) a pipeline with minimal user input that utilizes deep learning convolutional neural networks to extract and combine CT imaging, RT dose and clinical features for model development.

RESULTS

Clinical features with logistic regression in our highly user-driven pipeline had the highest precision recall area under the curve (PR-AUC) of 0.66 (0.33-0.93), where a PR-AUC = 0.11 is considered random.

CONCLUSIONS

Our work demonstrates the potential to aggregate features from multiple specialties for conditional-outcome predictions using pipelines with varied levels of human interaction. Most importantly, our results provide insights into the importance of data curation and quality, as well as user, data and methodology bias awareness as it pertains to result interpretation in user controlled pipelines.

摘要

目的

精准癌症医学依赖于对疾病和治疗结果的准确预测,这需要整合临床、影像和介入知识。用户控制的流水线能够以不同程度的人机交互进行特征整合。在这项工作中,我们提出了两个旨在结合临床、放射组学(量化成像)和 RTx-omics(量化放射治疗(RT)计划)信息以预测头颈部癌症(H&N)局部区域失败(LRF)的流水线。

方法

流水线旨在根据临床特征、计算机断层扫描(CT)成像和计划的 RT 剂量体积提取信息并建立患者预后模型。我们使用以下方法预测 H&N LRF:1)高度用户驱动的流水线,利用模块化设计和机器学习进行特征提取和模型开发;2)具有最小用户输入的流水线,利用深度学习卷积神经网络提取和组合 CT 成像、RT 剂量和临床特征进行模型开发。

结果

在高度用户驱动的流水线中,临床特征与逻辑回归相结合,具有最高的精度召回曲线下面积(PR-AUC)为 0.66(0.33-0.93),其中 PR-AUC=0.11 被认为是随机的。

结论

我们的工作表明,使用具有不同程度人机交互的流水线,从多个专业领域聚合特征进行条件结果预测是有潜力的。最重要的是,我们的结果提供了有关数据管理和质量、用户、数据和方法学偏见意识的见解,因为这与用户控制流水线的结果解释有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验