Suppr超能文献

通过探索模型的可解释性、可解释性和数据-模型依赖性,实现机器学习在放射肿瘤学中的安全高效临床应用。

Towards a safe and efficient clinical implementation of machine learning in radiation oncology by exploring model interpretability, explainability and data-model dependency.

机构信息

Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium.

PReCISE, NaDI Institute, Faculty of Computer Science, UNamur and CENTAL, ILC, UCLouvain, Belgium.

出版信息

Phys Med Biol. 2022 May 27;67(11). doi: 10.1088/1361-6560/ac678a.

Abstract

The interest in machine learning (ML) has grown tremendously in recent years, partly due to the performance leap that occurred with new techniques of deep learning, convolutional neural networks for images, increased computational power, and wider availability of large datasets. Most fields of medicine follow that popular trend and, notably, radiation oncology is one of those that are at the forefront, with already a long tradition in using digital images and fully computerized workflows. ML models are driven by data, and in contrast with many statistical or physical models, they can be very large and complex, with countless generic parameters. This inevitably raises two questions, namely, the tight dependence between the models and the datasets that feed them, and the interpretability of the models, which scales with its complexity. Any problems in the data used to train the model will be later reflected in their performance. This, together with the low interpretability of ML models, makes their implementation into the clinical workflow particularly difficult. Building tools for risk assessment and quality assurance of ML models must involve then two main points: interpretability and data-model dependency. After a joint introduction of both radiation oncology and ML, this paper reviews the main risks and current solutions when applying the latter to workflows in the former. Risks associated with data and models, as well as their interaction, are detailed. Next, the core concepts of interpretability, explainability, and data-model dependency are formally defined and illustrated with examples. Afterwards, a broad discussion goes through key applications of ML in workflows of radiation oncology as well as vendors' perspectives for the clinical implementation of ML.

摘要

近年来,机器学习(ML)的兴趣大增,部分原因是深度学习新技术、图像卷积神经网络、计算能力的提高以及大型数据集的广泛可用性带来了性能飞跃。大多数医学领域都遵循这一流行趋势,尤其是放射肿瘤学就是其中之一,它具有使用数字图像和全计算机化工作流程的悠久传统。ML 模型由数据驱动,与许多统计或物理模型不同,它们可能非常大且复杂,具有无数通用参数。这不可避免地提出了两个问题,即模型与其所使用的数据集之间的紧密依赖关系,以及模型的可解释性,这与模型的复杂性成正比。用于训练模型的数据中的任何问题以后都会反映在模型的性能上。这一点,再加上 ML 模型的低可解释性,使得它们在临床工作流程中的实施变得特别困难。构建用于评估 ML 模型的风险和质量保证的工具必须涉及两个要点:可解释性和数据-模型依赖性。在对放射肿瘤学和 ML 进行联合介绍之后,本文回顾了将后者应用于前者工作流程时的主要风险和当前解决方案。详细介绍了与数据和模型相关的风险以及它们之间的相互作用。接下来,正式定义了可解释性、可解释性和数据-模型依赖性的核心概念,并通过示例进行了说明。然后,广泛讨论了 ML 在放射肿瘤学工作流程中的关键应用以及供应商对 ML 的临床实施的观点。

相似文献

2
4
A review of mechanistic learning in mathematical oncology.
Front Immunol. 2024 Mar 12;15:1363144. doi: 10.3389/fimmu.2024.1363144. eCollection 2024.
5
Introduction to machine and deep learning for medical physicists.
Med Phys. 2020 Jun;47(5):e127-e147. doi: 10.1002/mp.14140.
6
Interpreting Deep Machine Learning Models: An Easy Guide for Oncologists.
IEEE Rev Biomed Eng. 2023;16:192-207. doi: 10.1109/RBME.2021.3131358. Epub 2023 Jan 5.
7
Machine learning and modeling: Data, validation, communication challenges.
Med Phys. 2018 Oct;45(10):e834-e840. doi: 10.1002/mp.12811. Epub 2018 Aug 24.
8
Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling.
BJR Open. 2019 Jul 4;1(1):20190021. doi: 10.1259/bjro.20190021. eCollection 2019.
10
Current status and future developments in predicting outcomes in radiation oncology.
Br J Radiol. 2022 Oct 1;95(1139):20220239. doi: 10.1259/bjr.20220239. Epub 2022 Jul 28.

引用本文的文献

2
Uncertainties in outcome modelling in radiation oncology.
Phys Imaging Radiat Oncol. 2025 May 7;34:100774. doi: 10.1016/j.phro.2025.100774. eCollection 2025 Apr.
3
Multicentre prospective risk analysis of a fully automated radiotherapy workflow.
Phys Imaging Radiat Oncol. 2025 Apr 6;34:100765. doi: 10.1016/j.phro.2025.100765. eCollection 2025 Apr.
4
Evaluation of MRI anatomy in machine learning predictive models to assess hydrogel spacer benefit for prostate cancer patients.
Tech Innov Patient Support Radiat Oncol. 2025 Feb 26;34:100305. doi: 10.1016/j.tipsro.2025.100305. eCollection 2025 Jun.
5
Performance Comparison of 10 State-of-the-Art Machine Learning Algorithms for Outcome Prediction Modeling of Radiation-Induced Toxicity.
Adv Radiat Oncol. 2024 Nov 13;10(2):101675. doi: 10.1016/j.adro.2024.101675. eCollection 2025 Feb.
7
When time is of the essence: ethical reconsideration of XAI in time-sensitive environments.
J Med Ethics. 2025 Jul 23;51(8):516-520. doi: 10.1136/jme-2024-110046.
8
"Under the hood": artificial intelligence in personalized radiotherapy.
BJR Open. 2024 Jul 16;6(1):tzae017. doi: 10.1093/bjro/tzae017. eCollection 2024 Jan.
10
"Evolving role of AI in radiation oncology"- special collection - introductory Editorial.
BJR Open. 2022 Nov 21;4(1):20229002. doi: 10.1259/bjro.20229002. eCollection 2022.

本文引用的文献

1
Improving Proton Dose Calculation Accuracy by Using Deep Learning.
Mach Learn Sci Technol. 2021 Mar;2(1). doi: 10.1088/2632-2153/abb6d5. Epub 2021 Apr 6.
2
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
4
SUVmax to tumor perimeter distance: a robust radiomics prognostic biomarker in resectable non-small cell lung cancer patients.
Eur Radiol. 2022 Jun;32(6):3889-3902. doi: 10.1007/s00330-021-08523-3. Epub 2022 Feb 8.
5
A review of some techniques for inclusion of domain-knowledge into deep neural networks.
Sci Rep. 2022 Jan 20;12(1):1040. doi: 10.1038/s41598-021-04590-0.
6
Site-agnostic 3D dose distribution prediction with deep learning neural networks.
Med Phys. 2022 Mar;49(3):1391-1406. doi: 10.1002/mp.15461. Epub 2022 Jan 27.
8
Integrating pathomics with radiomics and genomics for cancer prognosis: A brief review.
Chin J Cancer Res. 2021 Oct 31;33(5):563-573. doi: 10.21147/j.issn.1000-9604.2021.05.03.
9
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans.
Commun Biol. 2021 Nov 12;4(1):1286. doi: 10.1038/s42003-021-02814-7.
10
Radiomics for Predicting Lung Cancer Outcomes Following Radiotherapy: A Systematic Review.
Clin Oncol (R Coll Radiol). 2022 Mar;34(3):e107-e122. doi: 10.1016/j.clon.2021.10.006. Epub 2021 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验