Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan.
Plant Physiol. 2020 Apr;182(4):1894-1909. doi: 10.1104/pp.19.01118. Epub 2020 Feb 5.
Nitrogen (N) is an essential macronutrient, and the final form of endogenous inorganic N is ammonium, which is assimilated by Gln synthetase (GS) into Gln. However, how the multiple isoforms of cytosolic GSs contribute to metabolic systems via the regulation of ammonium assimilation remains unclear. In this study, we compared the effects of two rice () cytosolic GSs, namely OsGS1;1 and OsGS1;2, on central metabolism in roots using reverse genetics, metabolomic and transcriptomic profiling, and network analyses. We observed (1) abnormal sugar and organic N accumulation and (2) significant up-regulation of genes associated with photosynthesis and chlorophyll biosynthesis in the roots of but not knockout mutants. Network analysis of the mutant suggested that metabolism of Gln was coordinated with the metabolic modules of sugar metabolism, tricarboxylic acid cycle, and carbon fixation. Transcript profiling of mutant roots revealed that expression of the rice () genes in the mutants were transiently upregulated. GOLDEN2-LIKE transcription factor-encoding genes, which are involved in chloroplast biogenesis in rice, could not compensate for the lack of s in the mutant. Microscopic analysis revealed mature chloroplast development in roots but not in the roots of , -complemented lines, or the wild type. Thus, organic N assimilated by OsGS1;1 affects a broad range of metabolites and transcripts involved in maintaining metabolic homeostasis and plastid development in rice roots, whereas OsGS1;2 has a more specific role, affecting mainly amino acid homeostasis but not carbon metabolism.
氮(N)是一种必需的大量营养素,内源性无机 N 的最终形式是铵,它被 Gln 合成酶(GS)同化形成 Gln。然而,细胞溶质 GS 的多种同工型如何通过调节铵同化作用来影响代谢系统尚不清楚。在这项研究中,我们使用反向遗传学、代谢组学和转录组学分析以及网络分析比较了两种水稻()细胞溶质 GS,即 OsGS1;1 和 OsGS1;2,对根中中心代谢的影响。我们观察到(1)异常糖和有机 N 积累,以及(2)在 但不是 敲除突变体的根中与光合作用和叶绿素生物合成相关的基因显著上调。对 突变体的网络分析表明,Gln 的代谢与糖代谢、三羧酸循环和碳固定的代谢模块协调一致。对 突变体根的转录谱分析表明,突变体中水稻()基因的表达被短暂上调。参与水稻叶绿体生物发生的 GOLDEN2-LIKE 转录因子编码基因不能弥补 突变体中 s 的缺乏。显微镜分析显示, 根中有成熟的叶绿体发育,但 、-互补系或野生型的根中没有。因此,由 OsGS1;1 同化的有机 N 影响广泛的代谢物和转录物,这些代谢物和转录物参与维持水稻根中的代谢平衡和质体发育,而 OsGS1;2 具有更特定的作用,主要影响氨基酸平衡但不影响碳代谢。