Stillinger Timbo, Roberts Dar A, Collar Natalie M, Dozier Jeff
Bren School of Environmental Science and Management University of California Santa Barbara CA USA.
Department of Geography University of California Santa Barbara CA USA.
Water Resour Res. 2019 Jul;55(7):6169-6184. doi: 10.1029/2019WR024932. Epub 2019 Jul 29.
Automated, reliable cloud masks over snow-covered terrain would improve the retrieval of snow properties from multispectral satellite sensors. The U.S. Geological Survey and NASA chose the currently operational cloud masks based on global performance across diverse land cover types. This study assesses errors in these cloud masks over snow-covered, midlatitude mountains. We use 26 Landsat 8 scenes with manually delineated cloud, snow, and land cover to assess the performance of two cloud masks: CFMask for the Landsat 8 OLI and the cloud mask that ships with Moderate-Resolution Imaging Spectroradiometer (MODIS) surface reflectance products MOD09GA and MYD09GA. The overall precision and recall of CFMask over snow-covered terrain are 0.70 and 0.86; the MOD09GA cloud mask precision and recall are 0.17 and 0.72. A plausible reason for poorer performance of cloud masks over snow lies in the potential similarity between multispectral signatures of snow and cloud pixels in three situations: (1) Snow at high elevation is bright enough in the "cirrus" bands (Landsat band 9 or MODIS band 26) to be classified as cirrus. (2) Reflectances of "dark" clouds in shortwave infrared (SWIR) bands are bracketed by snow spectra in those wavelengths. (3) Snow as part of a fractional mixture in a pixel with soils sometimes produces "bright SWIR" pixels that look like clouds. Improvement in snow-cloud discrimination in these cases will require more information than just the spectrum of the sensor's bands or will require deployment of a spaceborne imaging spectrometer, which could discriminate between snow and cloud under conditions where a multispectral sensor might not.
在积雪覆盖的地形上实现自动化、可靠的云掩码将有助于利用多光谱卫星传感器更好地反演雪的特性。美国地质调查局和美国国家航空航天局根据在不同土地覆盖类型上的全球性能选择了当前运行的云掩码。本研究评估了这些云掩码在积雪覆盖的中纬度山区的误差。我们使用了26景陆地卫星8号影像,这些影像的云、雪和土地覆盖都经过了人工划定,以评估两种云掩码的性能:陆地卫星8号操作陆地成像仪(OLI)的CFMask以及中分辨率成像光谱仪(MODIS)地表反射率产品MOD09GA和MYD09GA附带的云掩码。CFMask在积雪覆盖地形上的总体精度和召回率分别为0.70和0.86;MOD09GA云掩码的精度和召回率分别为0.17和0.72。云掩码在雪上性能较差的一个合理原因在于,在三种情况下,雪和云像素的多光谱特征可能存在相似性:(1)高海拔地区的雪在“卷云”波段(陆地卫星9波段或MODIS 26波段)足够明亮,可被分类为卷云。(2)短波红外(SWIR)波段中“暗”云的反射率被这些波长下的雪光谱所包围。(3)作为与土壤混合的像素中的一部分的雪有时会产生看起来像云的“明亮SWIR”像素。在这些情况下,要改善雪云和云的区分,不仅需要传感器波段的光谱信息,还需要部署星载成像光谱仪,该光谱仪可以在多光谱传感器可能无法区分的条件下区分雪和云。