Korah Andrews, Wimberly Michael C
Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, OK, 73019, USA.
Sci Data. 2024 Jul 18;11(1):791. doi: 10.1038/s41597-024-03610-8.
Impervious surface data are increasingly important for research and planning. Despite the availability of global and local urban land cover maps, regional data are lacking in Africa. We generated annual 30 m impervious cover data from 2001-2020 for Ghana, Togo, Benin, and Nigeria using the Landsat archive. We used random forest to predict impervious cover using 11 spectral indices and applied pixel-level temporal segmentation with the LandTrendr algorithm. Processing with LandTrendr improved the accuracy of the random forest predictions, with higher predicted-observed r (0.81), and lower mean error (-0.03), mean absolute error (5.73%), and root mean squared error (9.93%). We classified pixels >20% impervious as developed and < = 20% impervious as undeveloped. This classification had 93% overall accuracy and similar producer's (79%) and user's (80%) accuracies for developed area. Our maps had higher accuracy and captured more developed areas than comparable global datasets. This is the first regionally calibrated 30 m resolution impervious dataset in West Africa, which can support research on drivers and impacts of urban expansion and planning for future growth.
不透水表面数据对于研究和规划日益重要。尽管有全球和本地城市土地覆盖图,但非洲缺乏区域数据。我们利用陆地卫星存档数据生成了2001年至2020年加纳、多哥、贝宁和尼日利亚每年30米分辨率的不透水覆盖数据。我们使用随机森林算法,利用11个光谱指数预测不透水覆盖,并应用LandTrendr算法进行像素级时间分割。使用LandTrendr进行处理提高了随机森林预测的准确性,预测值与观测值的相关系数r更高(0.81),平均误差更低(-0.03),平均绝对误差为5.73%,均方根误差为9.93%。我们将不透水率>20%的像素分类为已开发区域,不透水率<=20%的像素分类为未开发区域。该分类的总体准确率为93%,已开发区域的生产者精度(79%)和用户精度(80%)相近。我们的地图比同类全球数据集具有更高的精度,且捕捉到了更多的已开发区域。这是西非首个经过区域校准的30米分辨率不透水数据集,可支持有关城市扩张驱动因素和影响以及未来增长规划的研究。