Department of Biomedical Engineering, Boston University, Boston, MA, USA.
Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA.
Ann Biomed Eng. 2020 Mar;48(3):905-912. doi: 10.1007/s10439-020-02468-2. Epub 2020 Feb 5.
This paper provides a synopsis of discussions related to biomedical engineering core curricula that occurred at the Fourth BME Education Summit held at Case Western Reserve University in Cleveland, Ohio in May 2019. This summit was organized by the Council of Chairs of Bioengineering and Biomedical Engineering, and participants included over 300 faculty members from 100+ accredited undergraduate programs. This discussion focused on six key questions: QI: Is there a core curriculum, and if so, what are its components? QII: How does our purported core curriculum prepare students for careers, particularly in industry? QIII: How does design distinguish BME/BIOE graduates from other engineers? QIV: What is the state of engineering analysis and systems-level modeling in BME/BIOE curricula? QV: What is the role of data science in BME/BIOE undergraduate education? QVI: What core experimental skills are required for BME/BIOE undergrads? s. Indeed, BME/BIOI core curricula exists and has matured to emphasize interdisciplinary topics such as physiology, instrumentation, mechanics, computer programming, and mathematical modeling. Departments demonstrate their own identities by highlighting discipline-specific sub-specialties. In addition to technical competence, Industry partners most highly value our students' capacity for problem solving and communication. As such, BME/BIOE curricula includes open-ended projects that address unmet patient and clinician needs as primary methods to prepare graduates for careers in industry. Culminating senior design experiences distinguish BME/BIOE graduates through their development of client-centered engineering solutions to healthcare problems. Finally, the overall BME/BIOE curriculum is not stagnant-it is clear that data science will become an ever-important element of our students' training and that new methods to enhance student engagement will be of pedagogical importance as we embark on the next decade.
本文概述了 2019 年 5 月在俄亥俄州克利夫兰市凯斯西储大学举行的第四次生物医学工程教育峰会期间讨论的与生物医学工程核心课程相关的内容。此次峰会由生物工程和生物医学工程主席理事会组织,参与者包括来自 100 多个认证本科课程的 300 多名教师。本次讨论集中在六个关键问题上:问题 1:是否有核心课程,如果有,其组成部分是什么?问题 2:我们所谓的核心课程如何为学生的职业发展做好准备,特别是在工业领域?问题 3:设计如何使生物医学工程/生物工程专业的毕业生有别于其他工程师?问题 4:工程分析和系统级建模在生物医学工程/生物工程课程中的状态如何?问题 5:数据科学在生物医学工程/生物工程本科教育中的作用是什么?问题 6:生物医学工程/生物工程专业的本科生需要哪些核心实验技能?
确实,生物医学工程/生物工程核心课程已经存在并成熟,强调了生理学、仪器仪表、力学、计算机编程和数学建模等跨学科主题。各系通过突出特定学科的子专业来展示自己的特色。除了技术能力外,行业合作伙伴最看重我们学生解决问题和沟通的能力。因此,生物医学工程/生物工程课程包括以解决患者和临床医生未满足的需求为主要方法的开放式项目,以此为学生在工业界的职业生涯做准备。综合高级设计经验通过为医疗保健问题开发以客户为中心的工程解决方案,使生物医学工程/生物工程专业的毕业生脱颖而出。最后,整个生物医学工程/生物工程课程并非一成不变——很明显,数据科学将成为学生培训的一个越来越重要的元素,而随着我们进入下一个十年,增强学生参与度的新方法将具有教学重要性。