Suppr超能文献

结合大数据搜索分析和 FDA 不良事件报告系统数据库,以检测米氮平滥用的潜在安全信号。

Combining big data search analytics and the FDA Adverse Event Reporting System database to detect a potential safety signal of mirtazapine abuse.

机构信息

Aristotle University of Thessaloniki, Greece.

出版信息

Health Informatics J. 2020 Sep;26(3):2265-2279. doi: 10.1177/1460458219901232. Epub 2020 Feb 6.

Abstract

This study sought to detect a potential safety signal of mirtazapine abuse by combining two different sources of surveillance, specifically Google Analytics (Google, Inc., Mountain View, CA, USA) and the FDA Adverse Event Reporting System database. Data from the first quarter of 2004 to the second quarter of 2017 were collected and analysed. The search interest over time, the frequencies of abuse-related terms in the search analytics domain, and the odds ratio of abuse events in FDA Adverse Event Reporting System were determined. Correlations between the two aforementioned domains using quarterly data from the timeline series were also assessed. Our results suggest a positive correlation between abuse-related searches in the Google domain and abuse-related events in FDA Adverse Event Reporting System database. These results indicate that these methods can be used in combination with each other as a pharmacovigilance supplementary tool to detect drug safety signals.

摘要

本研究旨在通过结合两种不同的监测数据源,即谷歌分析(Google,Inc.,美国加利福尼亚州山景城)和美国 FDA 不良事件报告系统数据库,来探测米氮平滥用的潜在安全信号。本研究收集并分析了 2004 年第一季度至 2017 年第二季度的数据。确定了随时间变化的搜索兴趣、搜索分析领域中与滥用相关的术语的频率,以及 FDA 不良事件报告系统中滥用事件的比值。还评估了使用时间线系列的季度数据在上述两个领域之间的相关性。我们的研究结果表明,谷歌域中与滥用相关的搜索与 FDA 不良事件报告系统数据库中与滥用相关的事件之间存在正相关关系。这些结果表明,这些方法可以相互结合,作为药物警戒的补充工具,以检测药物安全性信号。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验