Suppr超能文献

通过将分子知识与上市后不良事件报告相结合来推进药物安全科学。

Advancing drug safety science by integrating molecular knowledge with post-marketing adverse event reports.

作者信息

Soldatos Theodoros G, Kim Sarah, Schmidt Stephan, Lesko Lawrence J, Jackson David B

机构信息

Molecular Health GmbH, Heidelberg, Germany.

Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, USA.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2022 May;11(5):540-555. doi: 10.1002/psp4.12765. Epub 2022 Feb 20.

Abstract

Promising drug development efforts may frequently fail due to unintended adverse reactions. Several methods have been developed to analyze such data, aiming to improve pharmacovigilance and drug safety. In this work, we provide a brief review of key directions to quantitatively analyzing adverse events and explore the potential of augmenting these methods using additional molecular data descriptors. We argue that molecular expansion of adverse event data may provide a path to improving the insights gained through more traditional pharmacovigilance approaches. Examples include the ability to assess statistical relevance with respect to underlying biomolecular mechanisms, the ability to generate plausible causative hypotheses and/or confirmation where possible, the ability to computationally study potential clinical trial designs and/or results, as well as the further provision of advanced features incorporated in innovative methods, such as machine learning. In summary, molecular data expansion provides an elegant way to extend mechanistic modeling, systems pharmacology, and patient-centered approaches for the assessment of drug safety. We anticipate that such advances in real-world data informatics and outcome analytics will help to better inform public health, via the improved ability to prospectively understand and predict various types of drug-induced molecular perturbations and adverse events.

摘要

有前景的药物研发工作可能常常因意外的不良反应而失败。已经开发了几种方法来分析此类数据,旨在改善药物警戒和药物安全性。在这项工作中,我们简要回顾了定量分析不良事件的关键方向,并探讨了使用额外的分子数据描述符增强这些方法的潜力。我们认为,不良事件数据的分子扩展可能为改善通过更传统的药物警戒方法获得的见解提供一条途径。例如,能够评估与潜在生物分子机制相关的统计相关性,能够生成合理的因果假设和/或在可能的情况下进行确认,能够通过计算研究潜在的临床试验设计和/或结果,以及进一步提供创新方法(如机器学习)中包含的高级功能。总之,分子数据扩展为扩展机制建模、系统药理学和以患者为中心的药物安全性评估方法提供了一种简洁的方式。我们预计,现实世界数据信息学和结果分析方面的此类进展将有助于通过提高前瞻性理解和预测各种类型药物诱导的分子扰动和不良事件的能力,更好地为公共卫生提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c287/9124355/e72aefb007f3/PSP4-11-540-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验