Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany.
ACS Chem Biol. 2020 Mar 20;15(3):675-685. doi: 10.1021/acschembio.9b00895. Epub 2020 Feb 19.
Thermodynamics and kinetics of protein-ligand binding are both important aspects for the design of novel drug molecules. Presently, thermodynamic data are collected with isothermal titration calorimetry, while kinetic data are mostly derived from surface plasmon resonance. The new method of kinITC provides both thermodynamic and kinetic data from calorimetric titration measurements. The present study demonstrates the convenient collection of calorimetric data suitable for both thermodynamic and kinetic analysis for two series of congeneric ligands of human carbonic anhydrase II and correlates these findings with structural data obtained by macromolecular crystallography to shed light on the importance of shape complementarity for thermodynamics and kinetics governing a protein-ligand binding event. The study shows how minute chemical alterations change preferred ligand conformation and can be used to manipulate thermodynamic and kinetic signatures of binding. They give rise to the observation that analogous -alkyl and -alkyloxy derivatives of identical chain length swap their binding kinetic properties at unchanged binding affinity.
蛋白质 - 配体结合的热力学和动力学都是设计新型药物分子的重要方面。目前,热力学数据是通过等温滴定量热法收集的,而动力学数据主要来自表面等离子体共振。新的 kinITC 方法从量热滴定测量中提供热力学和动力学数据。本研究展示了方便地收集适合热力学和动力学分析的两种碳酸酐酶 II 人同源配体系列的量热数据,并将这些发现与通过大分子晶体学获得的结构数据相关联,以阐明形状互补对蛋白质 - 配体结合事件的热力学和动力学的重要性。该研究表明,微小的化学改变如何改变首选配体构象,并可用于操纵结合的热力学和动力学特征。它们导致观察到相同链长的类似 - 烷基和 - 烷氧基衍生物在不改变结合亲和力的情况下交换其结合动力学性质。