文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

The potential of convolutional neural networks for identifying neural states based on electrophysiological signals: experiments on synthetic and real patient data.

作者信息

Rodriguez Fernando, He Shenghong, Tan Huiling

机构信息

MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.

出版信息

Front Hum Neurosci. 2023 Jun 2;17:1134599. doi: 10.3389/fnhum.2023.1134599. eCollection 2023.


DOI:10.3389/fnhum.2023.1134599
PMID:37333834
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10272439/
Abstract

Processing incoming neural oscillatory signals in real-time and decoding from them relevant behavioral or pathological states is often required for adaptive Deep Brain Stimulation (aDBS) and other brain-computer interface (BCI) applications. Most current approaches rely on first extracting a set of predefined features, such as the power in canonical frequency bands or various time-domain features, and then training machine learning systems that use those predefined features as inputs and infer what the underlying brain state is at each given time point. However, whether this algorithmic approach is best suited to extract all available information contained within the neural waveforms remains an open question. Here, we aim to explore different algorithmic approaches in terms of their potential to yield improvements in decoding performance based on neural activity such as measured through local field potentials (LFPs) recordings or electroencephalography (EEG). In particular, we aim to explore the potential of end-to-end convolutional neural networks, and compare this approach with other machine learning methods that are based on extracting predefined feature sets. To this end, we implement and train a number of machine learning models, based either on manually constructed features or, in the case of deep learning-based models, on features directly learnt from the data. We benchmark these models on the task of identifying neural states using simulated data, which incorporates waveform features previously linked to physiological and pathological functions. We then assess the performance of these models in decoding movements based on local field potentials recorded from the motor thalamus of patients with essential tremor. Our findings, derived from both simulated and real patient data, suggest that end-to-end deep learning-based methods may surpass feature-based approaches, particularly when the relevant patterns within the waveform data are either unknown, difficult to quantify, or when there may be, from the point of view of the predefined feature extraction pipeline, unidentified features that could contribute to decoding performance. The methodologies proposed in this study might hold potential for application in adaptive deep brain stimulation (aDBS) and other brain-computer interface systems.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/2d892ec8963d/fnhum-17-1134599-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/3e3ded5974aa/fnhum-17-1134599-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/5ae765d23b92/fnhum-17-1134599-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/616dbe06a926/fnhum-17-1134599-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/b2320d4f82c6/fnhum-17-1134599-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/e02497ee5cf4/fnhum-17-1134599-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/5c0aa791a121/fnhum-17-1134599-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/64ef1dda34fe/fnhum-17-1134599-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/72a824779bea/fnhum-17-1134599-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/da6a306d1597/fnhum-17-1134599-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/999b68153f10/fnhum-17-1134599-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/f9e01ea17620/fnhum-17-1134599-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/3e831019af88/fnhum-17-1134599-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/a83b926c45aa/fnhum-17-1134599-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/01bd86c85005/fnhum-17-1134599-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/2d892ec8963d/fnhum-17-1134599-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/3e3ded5974aa/fnhum-17-1134599-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/5ae765d23b92/fnhum-17-1134599-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/616dbe06a926/fnhum-17-1134599-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/b2320d4f82c6/fnhum-17-1134599-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/e02497ee5cf4/fnhum-17-1134599-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/5c0aa791a121/fnhum-17-1134599-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/64ef1dda34fe/fnhum-17-1134599-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/72a824779bea/fnhum-17-1134599-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/da6a306d1597/fnhum-17-1134599-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/999b68153f10/fnhum-17-1134599-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/f9e01ea17620/fnhum-17-1134599-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/3e831019af88/fnhum-17-1134599-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/a83b926c45aa/fnhum-17-1134599-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/01bd86c85005/fnhum-17-1134599-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef67/10272439/2d892ec8963d/fnhum-17-1134599-g015.jpg

相似文献

[1]
The potential of convolutional neural networks for identifying neural states based on electrophysiological signals: experiments on synthetic and real patient data.

Front Hum Neurosci. 2023-6-2

[2]
Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.

Sensors (Basel). 2019-1-8

[3]
Deep learning with convolutional neural networks for EEG decoding and visualization.

Hum Brain Mapp. 2017-8-7

[4]
Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation.

Exp Neurol. 2022-5

[5]
Decoding micro-electrocorticographic signals by using explainable 3D convolutional neural network to predict finger movements.

J Neurosci Methods. 2024-11

[6]
Machine-learning-based diagnostics of EEG pathology.

Neuroimage. 2020-10-15

[7]
Hyper-parameter tuning and feature extraction for asynchronous action detection from sub-thalamic nucleus local field potentials.

Front Hum Neurosci. 2023-5-24

[8]
Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.

J Vis Exp. 2012-6-26

[9]
Convolutional neural networks for decoding electroencephalography responses and visualizing trial by trial changes in discriminant features.

J Neurosci Methods. 2021-12-1

[10]
Decoding and interpreting cortical signals with a compact convolutional neural network.

J Neural Eng. 2021-3-2

本文引用的文献

[1]
A deep learning based model using RNN-LSTM for the Detection of Schizophrenia from EEG data.

Comput Biol Med. 2022-12

[2]
Principles of gait encoding in the subthalamic nucleus of people with Parkinson's disease.

Sci Transl Med. 2022-9-7

[3]
Deep neural networks constrained by neural mass models improve electrophysiological source imaging of spatiotemporal brain dynamics.

Proc Natl Acad Sci U S A. 2022-8-2

[4]
A practical guide to invasive neurophysiology in patients with deep brain stimulation.

Clin Neurophysiol. 2022-8

[5]
Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease.

Elife. 2022-5-27

[6]
Decoding naturalistic affective behaviour from spectro-spatial features in multiday human iEEG.

Nat Hum Behav. 2022-6

[7]
Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation.

Exp Neurol. 2022-5

[8]
Automatic Diagnosis of Schizophrenia in EEG Signals Using CNN-LSTM Models.

Front Neuroinform. 2021-11-25

[9]
Habituation After Deep Brain Stimulation in Tremor Syndromes: Prevalence, Risk Factors and Long-Term Outcomes.

Front Neurol. 2021-8-3

[10]
Within-cycle instantaneous frequency profiles report oscillatory waveform dynamics.

J Neurophysiol. 2021-10-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索