Suppr超能文献

美国行政索赔代码诊断自身炎症性疾病的准确性。

Accuracy of US Administrative Claims Codes for the Diagnosis of Autoinflammatory Syndromes.

机构信息

From the Division of Immunology, Department of Internal Medicine, University of Iowa, Iowa City, IA.

Department of Psychology, University of Kentucky, Lexington, KY.

出版信息

J Clin Rheumatol. 2021 Oct 1;27(7):278-281. doi: 10.1097/RHU.0000000000001319.

Abstract

OBJECTIVE

To determine the accuracy of case definitions for autoinflammatory syndromes (AISs) based on administrative claims codes compared with rheumatology records in the electronic medical record (EMR).

METHODS

An AIS screening filter of administrative codes was applied to a large tertiary care EMR database to extract all possible AIS cases. We manually chart reviewed all patients who were evaluated by a rheumatologist to determine their reference standard diagnosis of adult onset Still's disease (AOSD), Behçet's disease (BD), and familial Mediterranean fever (FMF). We calculated sensitivity, specificity, positive predictive values, negative predictive values, and area under the receiver operating characteristic curve of specific codes for diagnosing AIS subtypes.

RESULTS

We identified 273 individuals with possible AIS, of which 72 (26.4%) had a true AIS diagnosis, including 24 with AOSD, 32 with BD, and 9 with FMF. For all 3 AIS subtypes, the estimates of specificities and negative predictive values for specific administrative codes were excellent (>95%). Sensitivity estimates were excellent (>89%) for BD and FMF codes and lower for AOSD (46%-50%). Positive predictive values were excellent for BD (>99%) and AOSD (>86%) and lower for FMF (>53%). Area under the receiver operating characteristic curve estimates were excellent for BD (97%-98%) and FMF (93%) and very good for AOSD (75%).

CONCLUSIONS

This is the first study to characterize the accuracy of specific administrative codes for the diagnosis of AOSD, BD, and FMF in a large tertiary care EMR. Validation in external EMRs and linked EMR-administrative databases is needed to enable future clinical outcomes research of AIS.

摘要

目的

通过与电子病历(EMR)中的风湿病记录相比,确定基于行政索赔代码的自身炎症性疾病(AIS)病例定义的准确性。

方法

将 AIS 行政代码筛选过滤器应用于大型三级保健 EMR 数据库,以提取所有可能的 AIS 病例。我们手动对所有由风湿病学家评估的患者进行图表回顾,以确定他们的成人Still 病(AOSD)、贝切特病(BD)和家族性地中海热(FMF)的参考标准诊断。我们计算了特定代码诊断 AIS 亚型的敏感性、特异性、阳性预测值、阴性预测值和接收者操作特征曲线下的面积。

结果

我们确定了 273 名可能患有 AIS 的个体,其中 72 名(26.4%)具有真正的 AIS 诊断,包括 24 名 AOSD、32 名 BD 和 9 名 FMF。对于所有 3 种 AIS 亚型,特定行政代码的特异性和阴性预测值的估计值都非常高(>95%)。BD 和 FMF 代码的敏感性估计值非常高(>89%),而 AOSD 则较低(46%-50%)。BD(>99%)和 AOSD(>86%)的阳性预测值非常高,而 FMF(>53%)的阳性预测值较低。BD(97%-98%)和 FMF(93%)的接收者操作特征曲线估计值非常好,而 AOSD(75%)的接收者操作特征曲线估计值则很好。

结论

这是第一项在大型三级保健 EMR 中描述特定行政代码诊断 AOSD、BD 和 FMF 的准确性的研究。需要在外部 EMR 和 EMR-行政数据库中进行验证,以便能够进行未来的 AIS 临床结果研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验