Lee Saeyun, Kim Sujin, Segerstrom Suzanne, Ferguson Polly J, Lenert Aleksander
From the University of Iowa, Iowa City, IA.
University of Kentucky, Lexington, KY.
J Clin Rheumatol. 2025 Mar 1;31(2):60-64. doi: 10.1097/RHU.0000000000002172. Epub 2024 Nov 15.
The aim of this study was to evaluate and validate the accuracy and performance characteristics of administrative codes in diagnosing autoinflammatory syndromes (AISs).
We identified potential AIS patients from the electronic medical records at the University of Iowa Hospital and Clinics and the Stead Family Children's Hospital using a screening filter based on the 10th edition of the International Classification of Diseases ( ICD-10 ) codes and interleukin-1 antagonists. Diagnostic criteria for adult-onset Still disease, systemic juvenile idiopathic arthritis, Behçet disease (BD), familial Mediterranean fever (FMF), cryopyrin-associated periodic syndrome (CAPS), and SAPHO (synovitis, acne, pustulosis, hyperostosis, and osteitis) syndrome and chronic nonbacterial osteomyelitis (SAPHO-CNO) were reviewed for each patient. Patients who did not meet the diagnostic criteria were categorized as non-AIS. In this cross-sectional study, we calculated the sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating characteristic curve for the ICD codes in diagnosing AIS.
Out of the 502 patients with potential AIS, 338 patients (67%) had a true AIS diagnosis. Sensitivity ranged from 80% (SAPHO-CNO) to 100% (BD and FMF), and positive predictive value ranged from 15% (FMF) to 80% (SAPHO-CNO). Specificity ranged from 81% (FMF) to 99% (CAPS and SAPHO-CNO), whereas negative predictive value ranged from 98% (adult-onset Still disease) to 100% (systemic juvenile idiopathic arthritis, BD, FMF, and CAPS). All ICD codes or code combinations for the diagnosis of specific AIS subtypes showed high accuracy with areas under the receiver operating characteristic curve ≥0.89.
This study validated the accuracy of administrative codes for diagnosing AIS, supporting their use in constructing AIS cohorts for clinical outcomes research.
本研究旨在评估和验证行政编码在诊断自身炎症性综合征(AIS)方面的准确性和性能特征。
我们在爱荷华大学医院及诊所和斯特德家庭儿童医院的电子病历中,使用基于国际疾病分类第10版(ICD - 10)编码和白细胞介素 - 1拮抗剂的筛查过滤器,确定潜在的AIS患者。对每位患者的成人斯蒂尔病、系统性幼年特发性关节炎、白塞病(BD)、家族性地中海热(FMF)、冷吡啉相关周期性综合征(CAPS)以及滑膜炎、痤疮、脓疱病、骨肥厚和骨炎(SAPHO)综合征及慢性非细菌性骨髓炎(SAPHO - CNO)的诊断标准进行了审查。不符合诊断标准的患者被归类为非AIS。在这项横断面研究中,我们计算了ICD编码在诊断AIS时的敏感性、特异性、阳性预测值、阴性预测值以及受试者工作特征曲线下面积。
在502例潜在AIS患者中,338例(67%)被确诊为真正的AIS。敏感性范围为80%(SAPHO - CNO)至100%(BD和FMF),阳性预测值范围为15%(FMF)至80%(SAPHO - CNO)。特异性范围为81%(FMF)至99%(CAPS和SAPHO - CNO),而阴性预测值范围为98%(成人斯蒂尔病)至100%(系统性幼年特发性关节炎、BD、FMF和CAPS)。所有用于诊断特定AIS亚型的ICD编码或编码组合均显示出较高的准确性,受试者工作特征曲线下面积≥0.89。
本研究验证了行政编码在诊断AIS方面的准确性,支持其用于构建临床结局研究的AIS队列。