Suppr超能文献

基于问卷的慢性阻塞性肺疾病病例定义的验证。

Validation of Questionnaire-based Case Definitions for Chronic Obstructive Pulmonary Disease.

机构信息

From the Social & Scientific Systems, Durham, NC.

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC.

出版信息

Epidemiology. 2020 May;31(3):459-466. doi: 10.1097/EDE.0000000000001176.

Abstract

BACKGROUND

Various questionnaire-based definitions of chronic obstructive pulmonary disease (COPD) have been applied using the US representative National Health and Nutrition Examination Survey (NHANES), but few have been validated against objective lung function data. We validated two prior definitions that incorporated self-reported physician diagnosis, respiratory symptoms, and/or smoking. We also validated a new definition that we developed empirically using gradient boosting, an ensemble machine learning method.

METHODS

Data came from 7,996 individuals 40-79 years who participated in NHANES 2007-2012 and underwent spirometry. We considered participants "true" COPD cases if their ratio of postbronchodilator forced expiratory volume in 1 second to forced vital capacity was below 0.7 or the lower limit of normal. We stratified all analyses by smoking history. We developed a gradient boosting model for smokers only; predictors assessed (25 total) included sociodemographics, inhalant exposures, clinical variables, and respiratory symptoms.

RESULTS

The spirometry-based COPD prevalence was 26% for smokers and 8% for never smokers. Among smokers, using questionnaire-based definitions resulted in a COPD prevalence ranging from 11% to 16%, sensitivity ranging from 18% to 35%, and specificity ranging from 88% to 92%. The new definition classified participants based on age, bronchodilator use, body mass index (BMI), smoking pack-years, and occupational organic dust exposure, and resulted in the highest sensitivity (35%) and specificity (92%) among smokers. Among never smokers, the COPD prevalence ranged from 4% to 5%, and we attained good specificity (96%) at the expense of sensitivity (9-10%).

CONCLUSION

Our results can be used to parametrize misclassification assumptions for quantitative bias analysis when pulmonary function data are unavailable.

摘要

背景

美国具有代表性的全国健康和营养检查调查(NHANES)使用了各种基于问卷的慢性阻塞性肺疾病(COPD)定义,但很少有研究对这些定义进行验证。我们验证了两个之前的定义,它们纳入了自我报告的医生诊断、呼吸症状和/或吸烟情况。我们还验证了一个新的定义,该定义是使用梯度提升,一种集成机器学习方法,从经验中开发出来的。

方法

数据来自于 7996 名年龄在 40-79 岁之间的参与者,他们参加了 NHANES 2007-2012 年的研究,并接受了肺功能检查。如果支气管扩张剂后一秒用力呼气量与用力肺活量的比值低于 0.7 或低于正常下限,我们就认为参与者是真正的 COPD 病例。我们对所有分析都进行了分层,根据吸烟史进行分层。我们仅为吸烟者开发了一个梯度提升模型;评估的预测因素(共 25 个)包括社会人口统计学、吸入物暴露、临床变量和呼吸症状。

结果

基于肺功能的 COPD 患病率在吸烟者中为 26%,在从不吸烟者中为 8%。在吸烟者中,使用基于问卷的定义导致 COPD 的患病率从 11%到 16%不等,敏感性从 18%到 35%不等,特异性从 88%到 92%不等。新的定义根据年龄、支气管扩张剂使用、体重指数(BMI)、吸烟包年数和职业有机粉尘暴露对参与者进行分类,在吸烟者中获得了最高的敏感性(35%)和特异性(92%)。在从不吸烟者中,COPD 的患病率从 4%到 5%不等,我们获得了很好的特异性(96%),但牺牲了敏感性(9-10%)。

结论

当无法获得肺功能数据时,我们的结果可用于参数化定量偏差分析中的错误分类假设。

相似文献

引用本文的文献

本文引用的文献

6
Machine Learning for Fetal Growth Prediction.机器学习在胎儿生长预测中的应用。
Epidemiology. 2018 Mar;29(2):290-298. doi: 10.1097/EDE.0000000000000788.
9
Underdiagnosis in COPD: a battle worth fighting.慢性阻塞性肺疾病的诊断不足:一场值得为之奋斗的战役。
Lancet Respir Med. 2017 May;5(5):367-368. doi: 10.1016/S2213-2600(17)30133-9. Epub 2017 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验