Suppr超能文献

AMST:用于聚焦离子束扫描电子显微镜图像堆叠的中值平滑模板对齐。

AMST: Alignment to Median Smoothed Template for Focused Ion Beam Scanning Electron Microscopy Image Stacks.

机构信息

European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, 69117, Germany.

Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, 69117, Germany.

出版信息

Sci Rep. 2020 Feb 6;10(1):2004. doi: 10.1038/s41598-020-58736-7.

Abstract

Alignment of stacks of serial images generated by Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) is generally performed using translations only, either through slice-by-slice alignments with SIFT or alignment by template matching. However, limitations of these methods are two-fold: the introduction of a bias along the dataset in the z-direction which seriously alters the morphology of observed organelles and a missing compensation for pixel size variations inherent to the image acquisition itself. These pixel size variations result in local misalignments and jumps of a few nanometers in the image data that can compromise downstream image analysis. We introduce a novel approach which enables affine transformations to overcome local misalignments while avoiding the danger of introducing a scaling, rotation or shearing trend along the dataset. Our method first computes a template dataset with an alignment method restricted to translations only. This pre-aligned dataset is then smoothed selectively along the z-axis with a median filter, creating a template to which the raw data is aligned using affine transformations. Our method was applied to FIB-SEM datasets and showed clear improvement of the alignment along the z-axis resulting in a significantly more accurate automatic boundary segmentation using a convolutional neural network.

摘要

聚焦离子束扫描电子显微镜(FIB-SEM)生成的串行图像的堆叠对齐通常仅通过平移来完成,要么通过 SIFT 进行逐片对齐,要么通过模板匹配进行对齐。然而,这些方法存在两个局限性:沿数据集在 z 方向引入了偏差,这严重改变了观察到的细胞器的形态,以及无法补偿图像采集本身固有的像素大小变化。这些像素大小变化导致图像数据中的局部不对齐和几纳米的跳跃,这可能会影响下游的图像分析。我们引入了一种新方法,该方法允许仿射变换来克服局部不对齐,同时避免在数据集上引入缩放、旋转或剪切趋势的危险。我们的方法首先使用仅限制平移的对齐方法计算模板数据集。然后,通过中值滤波器沿 z 轴选择性地对这个预对齐数据集进行平滑处理,创建一个模板,使用仿射变换将原始数据对齐到这个模板。我们的方法应用于 FIB-SEM 数据集,结果表明在 z 轴上的对齐得到了明显的改善,使用卷积神经网络进行自动边界分割的准确性显著提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54c0/7004979/c403917f525d/41598_2020_58736_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验