Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA.
School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA.
Nucleic Acids Res. 2020 Apr 17;48(7):3888-3905. doi: 10.1093/nar/gkaa068.
Cells continuously monitor protein synthesis to prevent accumulation of aberrant polypeptides. Insufficient capacity of cellular degradative systems, chaperone shortage or high levels of mistranslation by ribosomes can result in proteotoxic stress and endanger proteostasis. One of the least explored reasons for mistranslation is the incorrect functioning of the ribosome itself. To understand how cells deal with ribosome malfunction, we introduced mutations in the Expansion Segment 7 (ES7L) of 25S rRNA that allowed the formation of mature, translationally active ribosomes but induced proteotoxic stress and compromised cell viability. The ES7L-mutated ribosomes escaped nonfunctional rRNA Decay (NRD) and remained stable. Remarkably, ES7L-mutated ribosomes showed increased segregation into cytoplasmic foci containing soluble misfolded proteins. This ribosome entrapment pathway, termed TRAP (Translational Relocalization with Aberrant Polypeptides), was generalizable beyond the ES7L mutation, as wild-type ribosomes also showed increased relocalization into the same compartments in cells exposed to proteotoxic stressors. We propose that during TRAP, assembled ribosomes associated with misfolded nascent chains move into cytoplasmic compartments enriched in factors that facilitate protein quality control. In addition, TRAP may help to keep translation at its peak efficiency by preventing malfunctioning ribosomes from active duty in translation.
细胞不断监测蛋白质合成,以防止异常多肽的积累。细胞降解系统的能力不足、伴侣蛋白短缺或核糖体翻译错误率高,可能导致蛋白毒性应激,危及蛋白质的稳定。导致翻译错误的原因中,核糖体本身的功能异常是研究最少的原因之一。为了了解细胞如何应对核糖体故障,我们在 25S rRNA 的扩展段 7(ES7L)中引入突变,这些突变允许成熟的、具有翻译活性的核糖体形成,但诱导蛋白毒性应激并损害细胞活力。ES7L 突变的核糖体逃避了无功能 rRNA 降解(NRD)并保持稳定。值得注意的是,ES7L 突变的核糖体显示出更多的分离到含有可溶性错误折叠蛋白的细胞质焦点中。这种核糖体捕获途径,称为 TRAP(翻译重新定位与异常多肽),不仅限于 ES7L 突变,因为在暴露于蛋白毒性应激剂的细胞中,野生型核糖体也显示出更多的重新定位到相同的隔室中。我们提出,在 TRAP 过程中,与错误折叠新生链组装的核糖体与易位到富含有助于蛋白质质量控制的因子的细胞质隔室相关联。此外,TRAP 可以通过防止功能失调的核糖体在翻译中发挥作用,来帮助保持翻译的最高效率。