Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States.
School of Science-Chemistry , Penn State Behrend , Erie , Pennsylvania 16563 , United States.
Inorg Chem. 2020 Feb 17;59(4):2144-2162. doi: 10.1021/acs.inorgchem.9b02599. Epub 2020 Feb 7.
Manganese porphyrins are used as catalysts in the oxidation of olefins and nonactivated hydrocarbons. Key to these reactions are high-valent Mn-(di)oxo species, for which [Mn(Porph)(X)] serve as precursors. To elucidate their properties, it is crucial to understand the interaction of the Mn center with the porphyrin ligand. Our study focuses on simple high-spin [Mn(TPP)X] (X = F, Cl, I, Br) complexes with emphasis on the spectroscopic properties of [Mn(TPP)Cl], using variable-temperature variable-field magnetic circular dichroism spectroscopy and time-dependent density functional theory to help with band assignments. The optical properties of [Mn(TPP)Cl] are complicated and unusual, with a Soret band showing a high-intensity feature at 21050 cm and a broad band that spans 23200-31700 cm. The 15000-18500 cm region shows the Cl(p) → d (CT), Q band, and overlap-forbidden Cl(p)_d → d transitions that gain intensity from the strongly allowed π → π* transition. The 20000-21000 cm region displays the prominent pseudo -type signal of the Soret band. The strongly absorbing features at 22500-28000 cm exhibit A⟨79⟩/A⟨81⟩ → d, CT, and symmetry-forbidden CT character, mixed with the π → π* transition. The strong d_B⟨80⟩ orbital interaction drives the ground-state MO mixing. Importantly, the splitting of the Soret band is explained by strong mixing of the porphyrin A(π)⟨81⟩ and the Cl(p)_d orbitals. Through this direct orbital pathway, the π → π* transition acquires intrinsic metal-d → porphyrin CT character, where the π → π* intensity is then transferred into the high-energy CT region of the optical spectrum. The heavier halide complexes support this conclusion and show enhanced orbital mixing and drastically increased Soret band splittings, where the 21050 cm band shifts to lower energy and the high-energy features in the 23200-31700 cm range increase further in intensity, compared to the chloro complex.
锰卟啉用作烯烃和非活化烃氧化的催化剂。这些反应的关键是高价 Mn-(二)氧物种,其中 [Mn(Porph)(X)] 作为前体。为了阐明它们的性质,了解 Mn 中心与卟啉配体的相互作用至关重要。我们的研究重点是简单的高自旋 [Mn(TPP)X](X = F、Cl、I、Br)配合物,重点研究 [Mn(TPP)Cl] 的光谱性质,使用变温变场磁圆二色性光谱和时间相关密度泛函理论来帮助进行能带分配。[Mn(TPP)Cl] 的光学性质复杂且不寻常,其 Soret 带在 21050 cm 处显示高强度特征,在 23200-31700 cm 处显示宽带。15000-18500 cm 区域显示 Cl(p) → d (CT)、Q 带和重叠禁止 Cl(p)_d → d 跃迁,这些跃迁从强烈允许的 π → π跃迁中获得强度。20000-21000 cm 区域显示 Soret 带的突出伪信号。在 22500-28000 cm 处强烈吸收的特征表现为 A⟨79⟩/A⟨81⟩ → d、CT 和对称禁止 CT 特征,与 π → π跃迁混合。强烈的 d_B⟨80⟩轨道相互作用驱动基态 MO 混合。重要的是,Soret 带的分裂是由卟啉 A(π)⟨81⟩和 Cl(p)_d 轨道的强烈混合解释的。通过这种直接轨道途径,π → π跃迁获得内在的金属 d → 卟啉 CT 特征,其中 π → π强度然后转移到光学光谱的高能 CT 区域。较重的卤化物配合物支持这一结论,并显示出增强的轨道混合和显着增加的 Soret 带分裂,其中 21050 cm 带向低能移动,23200-31700 cm 范围内的高能特征进一步增加强度,与氯配合物相比。