Mentré F, Mallet A, Steimer J L
INSERM U194, Département de Biomathématiques, Paris, France.
Biometrics. 1988 Sep;44(3):673-83.
A stochastic approximation algorithm is proposed for recursive estimation of the hyperparameters characterizing, in a population, the probability density function of the parameters of a statistical model. For a given population model defined by a parametric model of a biological process, an error model, and a class of densities on the set of the individual parameters, this algorithm provides a sequence of estimates from a sequence of individuals' observation vectors. Convergence conditions are verified for a class of population models including usual pharmacokinetic applications. This method is implemented for estimation of pharmacokinetic population parameters from drug multiple-dosing data. Its estimation capabilities are evaluated and compared to a classical method in population pharmacokinetics, the first-order method (NONMEM), on simulated data.
提出了一种随机逼近算法,用于递归估计总体中表征统计模型参数概率密度函数的超参数。对于由生物过程的参数模型、误差模型以及个体参数集上的一类密度所定义的给定总体模型,该算法从个体观测向量序列中提供一系列估计值。验证了一类包括常见药代动力学应用的总体模型的收敛条件。该方法用于从药物多次给药数据估计药代动力学总体参数。在模拟数据上评估了其估计能力,并与群体药代动力学中的经典方法——一阶方法(NONMEM)进行了比较。