Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
J Am Chem Soc. 2020 Mar 4;142(9):4317-4328. doi: 10.1021/jacs.9b12401. Epub 2020 Feb 20.
Metal-organic frameworks (MOFs) with coordinatively unsaturated metal sites are appealing as adsorbent materials due to their tunable functionality and ability to selectively bind small molecules. Through the use of computational screening methods based on periodic density functional theory, we investigate O and N adsorption at the coordinatively unsaturated metal sites of several MOF families. A variety of design handles are identified that can be used to modify the redox activity of the metal centers, including changing the functionalization of the linkers (replacing oxido donors with sulfido donors), anion exchange of bridging ligands (considering μ-Br, μ-Cl, μ-F, μ-SH, or μ-OH groups), and altering the formal oxidation state of the metal. As a result, we show that it is possible to tune the O affinity at the open metal sites of MOFs for applications involving the strong and/or selective binding of O. In contrast with O adsorption, N adsorption at open metal sites is predicted to be relatively weak across the MOF dataset, with the exception of MOFs containing synthetically elusive V open metal sites. As one example from the screening study, we predicted that exchanging the μ-Cl ligands of MCl(BBTA) (HBBTA = 1,5-benzo(1,2-:4,5-')bistriazole) with μ-OH groups would significantly enhance the strength of O adsorption at the open metal sites without a corresponding increase in the N affinity. Experimental investigation of CoCl(BBTA) and Co(OH)(BBTA) confirms that the former exhibits weak physisorption of both N and O, whereas the latter is capable of chemisorbing O at room temperature in a highly selective manner. The O chemisorption behavior is attributed to the greater electron-donating character of the μ-OH ligands and the presence of H-bonding interactions between the μ-OH bridging ligands and the reduced O adsorbate.
金属-有机骨架(MOFs)具有配位不饱和金属位点,由于其功能可调谐性和对小分子的选择性结合能力,因此作为吸附材料具有吸引力。通过使用基于周期性密度泛函理论的计算筛选方法,我们研究了几种 MOF 家族中配位不饱和金属位点的 O 和 N 吸附。确定了多种设计处理方法,可用于修饰金属中心的氧化还原活性,包括改变配体的功能化(用硫代供体代替氧化供体)、桥连配体的阴离子交换(考虑μ-Br、μ-Cl、μ-F、μ-SH 或 μ-OH 基团)以及改变金属的形式氧化态。结果表明,有可能调整 MOF 中开放金属位点对 O 的亲和力,用于涉及 O 的强和/或选择性结合的应用。与 O 吸附相反,在整个 MOF 数据集上,预测开放金属位点上的 N 吸附相对较弱,除了含有难以合成的 V 开放金属位点的 MOFs 外。作为筛选研究的一个示例,我们预测用μ-OH 基团取代 MCl(BBTA)(HBBTA = 1,5-苯并(1,2-:4,5-')双三唑)中的μ-Cl 配体将显著增强开放金属位点上 O 的吸附强度,而对 N 亲和力没有相应增加。CoCl(BBTA)和 Co(OH)(BBTA)的实验研究证实,前者对 N 和 O 都表现出较弱的物理吸附,而后者能够在室温下以高度选择性的方式化学吸附 O。O 化学吸附行为归因于μ-OH 配体的较大供电子特性以及μ-OH 桥连配体与还原 O 吸附物之间氢键相互作用的存在。