Suppr超能文献

模型神经递质与类脂双层膜的关系。

Association of Model Neurotransmitters with Lipid Bilayer Membranes.

机构信息

Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania.

Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania; National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland.

出版信息

Biophys J. 2020 Mar 10;118(5):1044-1057. doi: 10.1016/j.bpj.2020.01.016. Epub 2020 Jan 28.

Abstract

Aimed at reproducing the results of electrophysiological studies of synaptic signal transduction, conventional models of neurotransmission are based on the specific binding of neurotransmitters to ligand-gated receptor ion channels. However, the complex kinetic behavior observed in synaptic transmission cannot be reproduced in a standard kinetic model without the ad hoc postulation of additional conformational channel states. On the other hand, if one invokes unspecific neurotransmitter adsorption to the bilayer-a process not considered in the established models-the electrophysiological data can be rationalized with only the standard set of three conformational receptor states that also depend on this indirect coupling of neurotransmitters via their membrane interaction. Experimental verification has been difficult because binding affinities of neurotransmitters to the lipid bilayer are low. We quantify this interaction with surface plasmon resonance to measure equilibrium dissociation constants in neurotransmitter membrane association. Neutron reflection measurements on artificial membranes, so-called sparsely tethered bilayer lipid membranes, reveal the structural aspects of neurotransmitters' association with zwitterionic and anionic bilayers. We thus establish that serotonin interacts nonspecifically with the membrane at physiologically relevant concentrations, whereas γ-aminobutyric acid does not. Surface plasmon resonance shows that serotonin adsorbs with millimolar affinity, and neutron reflectometry shows that it penetrates the membrane deeply, whereas γ-aminobutyric is excluded from the bilayer.

摘要

针对重现突触信号转导的电生理学研究结果,传统的神经递质传递模型基于神经递质与配体门控受体离子通道的特异性结合。然而,如果不特别假设其他构象通道状态,复杂的突触传递中观察到的复杂动力学行为就无法在标准动力学模型中重现。另一方面,如果人们认为未被考虑在既定模型中的非特异性神经递质吸附到双层膜上——则电生理学数据可以通过仅依赖于标准的三个构象受体状态来合理化,这三个构象受体状态也依赖于通过其膜相互作用间接耦合的神经递质。由于神经递质与脂质双层的结合亲和力较低,因此实验验证一直具有挑战性。我们使用表面等离子体共振来量化这种相互作用,以测量神经递质膜结合的平衡离解常数。对人工膜(所谓的稀疏束缚双层脂质膜)进行的中子反射测量揭示了神经递质与两性离子和阴离子双层结合的结构方面。因此,我们确定了在生理相关浓度下,血清素与膜非特异性相互作用,而γ-氨基丁酸则没有。表面等离子体共振显示血清素以毫摩尔亲和力吸附,而中子反射测量显示它深入穿透膜,而γ-氨基丁酸则被排除在双层之外。

相似文献

1
Association of Model Neurotransmitters with Lipid Bilayer Membranes.模型神经递质与类脂双层膜的关系。
Biophys J. 2020 Mar 10;118(5):1044-1057. doi: 10.1016/j.bpj.2020.01.016. Epub 2020 Jan 28.
2
Affinity of four polar neurotransmitters for lipid bilayer membranes.四种极性神经递质与脂质双层膜的亲和力。
J Phys Chem B. 2011 Jan 13;115(1):196-203. doi: 10.1021/jp108368w. Epub 2010 Dec 15.
5
Functional tethered lipid bilayers.功能性束缚脂质双层膜。
J Biotechnol. 2000 Sep;74(3):137-58. doi: 10.1016/s1389-0352(00)00012-x.

引用本文的文献

2
Serotonin Signaling through Lipid Membranes.通过脂质膜传递血清素信号。
ACS Chem Neurosci. 2024 Apr 3;15(7):1298-1320. doi: 10.1021/acschemneuro.3c00823. Epub 2024 Mar 18.
4
Different membrane order measurement techniques are not mutually consistent.不同的膜序测量技术并不相互一致。
Biophys J. 2023 Mar 21;122(6):964-972. doi: 10.1016/j.bpj.2022.08.029. Epub 2022 Aug 24.
8
Selective Advantages of Synapses in Evolution.进化中突触的选择优势。
Front Cell Dev Biol. 2021 Aug 20;9:726563. doi: 10.3389/fcell.2021.726563. eCollection 2021.

本文引用的文献

1
Optimization of reflectometry experiments using information theory.利用信息论优化反射测量实验。
J Appl Crystallogr. 2019 Feb 1;52(Pt 1):47-59. doi: 10.1107/S1600576718017016.
2
Soft Matter in Lipid-Protein Interactions.脂质-蛋白质相互作用中的软物质。
Annu Rev Biophys. 2017 May 22;46:379-410. doi: 10.1146/annurev-biophys-070816-033843.
5
Fast formation of low-defect-density tethered bilayers by fusion of multilamellar vesicles.多层囊泡融合快速形成低缺陷密度束缚双层。
Biochim Biophys Acta Biomembr. 2017 May;1859(5):669-678. doi: 10.1016/j.bbamem.2017.01.015. Epub 2017 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验